SVD-based layout representation for lithographic hotspot detection
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ABSTRACT

With the continuous scaling of semiconductor manufacturing, lithographic hotspot detection has become crucial for
improving manufacturing yield. Due to the extremely high spatial resolution of layout patterns, directly converting layout
into raw images for deep-learning based hotspot detection leads to high computational complexity, so compact and
informative layout representations are essential. Existing approaches have important limitations: the discrete cosine
transform (DCT) tends to discard high-frequency details, while the squish pattern technique will introduce inconsistent
data semantics across channels that impede neural network training. To address these challenges, this paper proposes a
novel layout representation method based on singular value decomposition (SVD). By exploiting layout characteristics,
the SVD-based approach enables significant lossless data reduction in deep learning training while preserving topological
information from the original patterns which is critical for hotspot detection. On public ICCAD datasets, our method attains
an average lossless data reduction rate of 98.8% compared to converting layout into raw images in model training. To
validate the effectiveness of SVD representation, we integrate the reorganized SVD features and other representation
tensors with ResNetl8 to perform hotspot detection. Experimental results show that the SVD-based representation
outperforms alternative representation methods. Moreover, with the simple ResNet18 architecture, the proposed SVD
representation attains performance that matches or exceeds other complex state-of-the-art hotspot detection approaches.
These findings indicate that the SVD method efficiently representing layout information while preserving the
discriminative features necessary for robust and reliable hotspot detection.
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1. INTRODUCTION

With the advancement of semiconductor manufacturing, the persistent scaling of transistor feature sizes and the
increasing complexity of integrated circuits have presented significant challenges for design for manufacturability
(DFM). Among various DFM tasks, lithographic layout hotspot detection aims to identify layout patterns that are likely
to form printing failures such as breaks or bridges during lithography due to optical proximity effects (OPE), at an early
stage of the design flow. It plays a crucial role in improving manufacturing yield.

Hotspot detection methods are primarily categorized into lithography simulation, pattern matching and deep learning
(DL) based approaches[1]. Lithography simulation methods[2] model the lithography process with detailed mathematical
and physical models and perform accurate computations to identify hotspots, but full-chip lithography simulation is
computationally expensive and time-consuming, requiring extensive process and design-rule knowledge[3, 4]. Pattern-
matching techniques[5-8] detect hotspots by comparing the layout against a predefined library of hotspot patterns.
However, in advanced process nodes the diversity of failure modes and the complexity of layout images make it
extremely challenging to construct a comprehensive and representative hotspot library, and impose stricter requirements
on feature selection and matching strategies[9].

In recent years, DL techniques have been increasingly applied to DFM applications[10-12], bringing notable progress in
layout hotspot detection[13-18]. DL techniques are capable of learning hidden relations between layout patterns and their
defect characteristics, greatly improving detection accuracy. Current DL-based methods primarily convert the layout into
an image and construct complex model architectures to address the hotspot detection problem. However, due to the
extremely high spatial resolution of layout patterns (e.g. 1 nm), the generated layout image can be exceedingly large.
Directly resizing these images leads to a severe loss of spatial detail. Consequently, an effective layout representation for
dimensionality reduction is essential.
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Existing layout representation methods, such as the Discrete Cosine Transform (DCT)[19] and the squish pattern

technique[20, 21], suffer from significant limitations. The DCT-based approach, which retains only low-frequency

coefficients of the layout, often fails to preserve high-frequency details critical to layout hotspot detection, such as right-

angle corners or abrupt variations in metal-line spacing. The squish pattern method exploits the Manhattan geometry of

layouts by encoding them as a binary presence matrix of layout elements and two numerical matrices for the width and

height at each location. But the inconsistent data semantics across these channels may impede deep neural network

training.

In this work, we propose a novel layout representation method based on singular value decomposition (SVD). The

method leverages the characteristics of layout patterns to achieve efficient lossless data reduction while preserving key

topological information from the original patterns, generating high-fidelity layout tensors for deep learning training. The

main contributions of this paper are as follows:

1. We introduce SVD as a layout-representation technique that reduces data volume while preserving critical
topological information of layout patterns.

2. We demonstrate that SVD can achieve high-rate lossless data reduction compared to converting layout into raw
images in deep learning training and validate this empirically on public datasets.

3. We integrate the SVD-based representation with a simple ResNet18[22] backbone to achieve efficient and highly
accurate hotspot detection, thus validates the effectiveness of SVD in layout representation.

The remainder of this paper is organized as follows. Section 2 defines the problems of hotspot detection and layout

representation. Section 3 describes the proposed SVD method in detail, explains why it is efficient for layout

representation, analyzes the high-fidelity preservation of topological information in the extracted features, and validates

these features within a simple ResNet18 backbone in hotspot detection. Section 4 presents experimental results for data

reduction and hotspot detection on public ICCAD datasets. Finally, Section 5 concludes the paper.

2. PRELIMINARY
2.1 Lithographic Hotspot Detection

A lithographic hotspot is a layout clip whose geometric features make it highly susceptible to manufacturing defects
during photolithography. The hotspot detection problem can be defined as a binary classification task. Let TP, FP, FN
and TN denote true positives, false positives, false negatives and true negatives respectively. The following metrics are
used to evaluate the performance of a hotspot detector.

Definition 1 (Recall). Recall is defined as the fraction of ground-truth hotspots that are correctly detected.

TP
Recall = ————— 6]
TP+ FN
Definition 2 (False Alarm Rate). False Alarm Rate (FAR) refers to the fraction of non-hotspots incorrectly classified as
hotspots.
FP
R=—™" 2
TP+ FN

With these metrics, we formulate the hotspot detection problem as follows:

Problem 1 (Hotspot Detection). Given a set of layout clips, the goal is to develop a classification model that achieves a
high recall while maintaining a reasonably low FAR, thereby ensuring that the maximum number of true defects are
found without introducing an excessive number of false warnings.

2.2 Layout Representation

Raw layout data (e.g., GDSII) are high-resolution, Manhattan-geometry designs that are both spatially sparse and rich in
small but critical geometric features. For DL models to process circuit layouts, the raw layout data must be converted
into a suitable numerical tensor. A straightforward representation is converting the layout to a high-resolution image.
However, large-scale layouts tend to be spatially sparse, resulting in significant computational overhead and an increased
risk of overfitting when processed by DL-based models. Therefore, a layout representation g maps a high-dimensional

layout clip / to a compact tensor 7" suitable for model learning utilizing layout properties:

g: /> T eRCTY 3)
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An ideal layout representation method should achieve efficient data reduction to avoid computational overhead in model
training, and more importantly, it must maintain high fidelity to the original layout. This means that topological features

critical to hotspot detection must be effectively preserved in the resulting tensor 7 .

3. METHOD
3.1 Utilizing SVD for efficient layout representation

As illustrated in Fig. 1, singular value decomposition (SVD) is a theorem in linear algebra which states that a layout clip
represented as a matrix 4 € R™" can be factorized as the product of a left orthogonal matrix U € R"" , a diagonal
matrix 2 € R™", and the transpose of a right orthogonal matrix V" € R"" | i.e.

A=UzV" 4)
The entries on the diagonal of X are called the singular values. The columns of U and the rows of V7 are referred to as

the left and right singular vectors, respectively. Equivalently, the decomposition may be written as a sum of rank-one
components:

k
A= Z ouv (5)
i=1

where k is the number of non-zero singular values, 0, is the i -th singular value, u, € R™ and v, € R" are its

corresponding left and right singular vectors, respectively. Furthermore, because the features derived from SVD are
inherently correlated with the topology of the original layout, the matrices U and V" (and their respective column

vectors 1, and V, ) are designated as the layout's row and column information matrices (and vectors). The detailed

explanation of these terms will be provided later in this work.

None-zero singular values £

—T
01 * vy —
0-2 —T

T
Z'NxM VMxM

Fig. 1. An illustration of SVD for layout representation and its features preserving layout topological structure

After applying SVD to layout, lossless data reduction can be achieved by discarding zero singular values. We find that
SVD is especially well-suited for layout representation and enables an extremely high lossless data reduction rate
compared to converting layout into raw images in model training. Here is a brief explanation: first, the number of

nonzero singular values of a matrix equals its rank as equation (6). Since U and V are orthogonal, multiplication by
them does not change the rank of a matrix; therefore, for layout matrix A ,rank(A) = rank(XZ). The rank of a
diagonal matrix 2 equals the number of its nonzero diagonal entries, i.e. the number of nonzero singular values & :
rank(A) = rank(ULV") = rank(X) =k (6)
Second, layout images are low-rank as equation (7). The rank of a matrix is defined as the maximum number of linearly

independent rows or columns. Because layout image contains many repeated rows and columns, these rows/columns are
linearly dependent, making image rank is much smaller than its dimensions:
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rank(A) << m,n 7

Consequently, most singular values of a layout matrix are zero, and only keeping a small number & of nonzero singular
values and their associated singular vectors are sufficient to represent the layout matrix without loss of information.

Beyond lossless data reduction, SVD features also preserve the layout’s topological information. The SVD explicitly

. T . .
decomposes the layout matrix into the sum of rank-one terms o, V; . Each term is a rank-one matrix formed by the

outer product of a left and a right singular vector scaled by O, and therefore represents a distinct component of the
original layout, as shown in Fig. 1. This algebraic structure inherently embeds layout information within the singular

vectors; specifically, u, encapsulates the row-wise information while vl.T summarizes the column-wise information for
that particular component. The magnitude of the singular value ©; reflects the contribution of the component to the

original layout: large 0, corresponds to components that capture overall structure, whereas smaller 0, captures fine

details. Therefore, U / u;, and V' / Vv, are naturally designated as row- and column-information embeddings of the

layout; consequently, deep models trained on these SVD-derived features can effectively learn and exploit the
topological characteristics of the original layout.

3.2 Hotspot detection with SVD features

To validate the effectiveness of SVD for layout representation, we apply the SVD features to the hotspot detection task
and compare their performance with raw images and other layout-representation methods under a ResNet18 backbone.
To enable the backbone network to fully exploit the SVD features, we reorganize them into a 2-channel feature tensor as

illustrated in Fig. 2. Specifically, we truncate the top & =30 singular values and sort them in descending order. For

each selected singular value O; , we compute /O u, and , o .V, , then aggregate all left-side vectors o ; ui}f:1 into

one matrix and all right-side vectors {,/0,V, }le into another matrix; these two matrices form the two channels of the

resulting tensor.

Each layout clip is processed by this SVD-based representation to produce a two-channel tensor, which is fed into the
ResNet18 backbone for training. Through a hierarchy of convolutional layers, the backbone jointly captures row-wise
and column-wise as well as overall and detailed layout features through the reconstructed tensor, and a final fully
connected layer maps the learned features to a binary probability as the hotspot prediction. Because hotspot examples are
much rarer than non-hotspots[23, 24], we employ the focal loss[25], which dynamically down-weights easy samples and
forces the network to focus on hard, misclassified samples and the scarce hotspot samples. During inference, the class
with the higher predicted probability is taken as the model decision.

Iﬁ t_ I_ ResNet18 + Focal Loss
o VoL UG, Uy [0 Uy
04, Uy, Uy l 1

A R

O, Up, Vr — — —
ko Bl Tk VOL V1O, V7 [0y D
Layout Image SVD Features B 1 ] Backbone Hotspot
SVD Feature Tensor — 2 Channel Matrix Likelihood

Fig. 2. SVD feature tensor generation for hotspot detection.

To further overcome the imbalance in the dataset, we perform data augmentation on hotspot samples. Owing to the
symmetry of the lithographic illumination, certain geometric transformations (e.g., flips and rotations) that change the
orientation of layout patterns do not affect their attributes[26]. Therefore, we apply operations listed in Fig. 3 to every
hotspot sample in our training set to augment the data. Furthermore, we discover that these transforms correspond to
simple operations on # and V. For example, reversing the order of singular-vector components or swapping the
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corresponding £, and V, produces flips and rotations of the layout image, indicating that the layout’s topological
structure is preserved in the SVD features. Fig. 3 also illustrates the visual effects of these operations on the
reconstructed patterns. In the figure, ”z represents reverse the order of vector u;, and the swapping of #, and Vv, is

shown by switching their position.
— = — 5 — — T —> — 7T —

| = 1

i
1 ! —— ——
— —s7 —_ —r
I I

~

(a) Original (b) Flip Vertically (c) Flip Horizontally (d) Rotate 180°
— gl — — g — «— g T— — 0 T—
u; u; U; U;

(e) Transpose (f) Rotate 90° CCW (2) Rotate 90° CW (h) Ati-Transpose

Fig. 3. Hotspot data augmentation methods with operations on « and v.

4. EXPERIMENTAL RESULT
4.1 Dataset

We evaluate the proposed SVD-based layout representation approach for data reduction and hotspot detection on the
public ICCAD2012[23] and ICCAD2019[24] datasets. Each dataset contains series of layout clips with physical
dimensions of 1200 nmx1200 nm and resolution of 1nm.

4.2 SVD data reduction result

To validate the efficiency of SVD for layout data reduction, we performed SVD on every layout in ICCAD2012 and
ICCAD2019 and recorded the distribution of nonzero singular values & . As shown in Fig. 4, among the theoretical
maximum of 1200 singular values only a very small subset is nonzero. This empirical low-rank property underlies the
efficient lossless data reduction achievable by SVD. We measure the loss data reduction rate ( R, ) relative to storing

layout as raw images for model training as

R, :1_(n+m+l)k ®)
nm
where 7 and m are the width and height of the original image (here # =m =1200), and k is the number of nonzero
singular values retained. On the public ICCAD2012 and ICCAD2019 datasets this method achieves average lossless data
reduction rates of 98.95% and 98.85%, respectively.
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(a) The ICCAD2012 Dataset. (b) The ICCAD2019 Dataset.
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Fig. 4. Distribution of the number of non-zero singular values (k out of 1200) in the (a) ICCAD2012 and (b) ICCAD2019
dataset.

4.3 Hotspot detection setup

Hotspot detection experiments were carried out on a workstation equipped with an NVIDIA GeForce RTX 4080s GPU.

In order to evaluate the quality of various layout representations, the tensors generated from these representation

methods were trained on a ResNet18 backbone with focal loss to compare their detection performance and runtime.

Implementation details for the compared representations are as follows:

® DCT. We follow the procedure in [19] to uniformly partition each layout into 12x12 regions. Each 100x100 patch
is transformed by the Discrete Cosine Transform (DCT). Coefficients are read out via a zig-zag scan and the first
32 low-frequency coefficients are retained to produce a 32-channel 12x12 tensor.

®  Squish pattern. Following the referenced squish-pattern method[20, 21], the layout is partitioned respecting the
Manhattan geometry. Each partition is encoded as a binary presence matrix plus two numerical matrices recording
local width and height, generating a 3-channel 128x128 tensor.

® SVD. SVD features are assembled into a 2-channel 1200x30 tensor as Section 3.

Because hotspot samples are far fewer than non-hotspot samples and geometric transforms like rotations and reflections

do not alter a pattern’s hotspot label, we augment the training set by applying the operations listed in Fig. 3 to every

hotspot sample, resulting in an eightfold increase of hotspot instances. To accommodate different input tensor shapes

produced by the three representation methods while keeping the model capacity comparable, we preserve the key model

hyperparameters such as number of layers, kernel sizes, etc. and only adjust stride to achieve different pooling strategies

as necessary.

4.4 Comparison between layout representation

Fig. 5 compares the detection performance and runtime of several layout-representation methods and direct raw-image
processing when trained on a ResNet18 backbone with focal loss. Frame-per-second (FPS) denotes the number of layout
images processed per second.

The results show that all three layout representation methods are over 10 times faster than processing raw 1200x1200
images, satisfying the efficiency requirements for backbone training. Regarding detection performance, on the
ICCAD2012 dataset, our SVD-based representation attains the lowest FAR of only 0.1% while maintaining high recall.
On the more challenging ICCAD2019 dataset, the SVD approach achieves the highest recall of 99.6% among all tested
methods. These results indicate that SVD features offer advantages over other representation method, with the benefit
becoming more pronounced on harder datasets.
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(a) The ICCAD2012 Dataset

(b) The ICCAD2019 Dataset
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Fig. 5. Hotspot detection prformance comparison of different layout representation methods in the (a) ICCAD2012 and (b)
ICCAD2019 dataset for hotspot detection.

4.5 Comparison with state-of-the-art

We further compare the simple SVD and ResNet18 detection framework against state-of-the-art (SOTA) methods, with
results shown in Table 1. On ICCAD2012, our SVD method achieves a superior balance of recall and FAR. Compared to
direct detection with ResNet in [26], it lowers the FAR by 3.8% at a comparable recall. On the more difficult
ICCAD2019 dataset, the SVD method attains the highest recall, increasing the average recall of competing methods by
16.9% while maintaining a comparable FAR.

Under the simple backbone network, the SVD-based layout representation can also achieve detection performance that
matches or surpasses more complex SOTA architectures. The experimental results validate that the proposed SVD layout
representation efficiently reduces layout data while preserving critical topological information necessary for reliable

hotspot detection.
Table 1. Comparison with state-of-the-art methods in the (a) ICCAD2012 and (b) ICCAD2019 dataset for hotspot detection.
(a) The ICCAD2012 Dataset (b) The ICCAD2019 Dataset

Methods Recall (%) FA (%) Methods Recall (%) FA (%)

IWAPS' 2022[26] 98.0 3.9 TODAES' 2022[16] 87.2 9.7

DATE' 2023[27] 96.2 6.4 TCAD' 2020[28] 80.9 2.5

DAC'2024[17] 98.5 8.3 DATE' 2023[27] 91.6 8.6

GLSVLSTI' GLSVLSTI'

2024[29] 88.3 0.2 2024[29] 62.3 3.7

TODAES' 2025[9] 98.1 4.0 TCAD' 2025[30] 91.3 8.4

TCAD' 2025[30] 99.0 5.8 SVD (Ours) 99.6 9.7

SVD (Ours) 98.0 0.1

5. CONCLUSION

In this paper, we introduced a novel SVD-based layout representation for lithographic hotspot detection to overcome the
limitations of existing layout representation methods. By leveraging the inherent low-rank property of layout images, our
method achieves an extremely high lossless data reduction rate compared to storing layout as raw images for model
training. More importantly, the SVD features effectively preserve the critical topological information of the original
layout patterns. Experimental results on public ICCAD datasets demonstrate that when integrated with a ResNet18
backbone, our SVD-based representation not only enhances computational efficiency but also achieves hotspot detection
performance that is comparable to or surpasses that of more complex, state-of-the-art method. This validates that the
proposed SVD representation is a highly effective approach for layout data reduction while maintaining the high-fidelity
features essential for accurate hotspot detection.
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