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ABSTRACT   

With the continuous scaling of semiconductor manufacturing, lithographic hotspot detection has become crucial for 

improving manufacturing yield. Due to the extremely high spatial resolution of layout patterns, directly converting layout 

into raw images for deep-learning based hotspot detection leads to high computational complexity, so compact and 

informative layout representations are essential. Existing approaches have important limitations: the discrete cosine 

transform (DCT) tends to discard high-frequency details, while the squish pattern technique will introduce inconsistent 

data semantics across channels that impede neural network training. To address these challenges, this paper proposes a 

novel layout representation method based on singular value decomposition (SVD). By exploiting layout characteristics, 

the SVD-based approach enables significant lossless data reduction in deep learning training while preserving topological 

information from the original patterns which is critical for hotspot detection. On public ICCAD datasets, our method attains 

an average lossless data reduction rate of 98.8% compared to converting layout into raw images in model training. To 

validate the effectiveness of SVD representation, we integrate the reorganized SVD features and other representation 

tensors with ResNet18 to perform hotspot detection. Experimental results show that the SVD-based representation 

outperforms alternative representation methods. Moreover, with the simple ResNet18 architecture, the proposed SVD 

representation attains performance that matches or exceeds other complex state-of-the-art hotspot detection approaches. 

These findings indicate that the SVD method efficiently representing layout information while preserving the 

discriminative features necessary for robust and reliable hotspot detection.  
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1. INTRODUCTION  

With the advancement of semiconductor manufacturing, the persistent scaling of transistor feature sizes and the 

increasing complexity of integrated circuits have presented significant challenges for design for manufacturability 

(DFM). Among various DFM tasks, lithographic layout hotspot detection aims to identify layout patterns that are likely 

to form printing failures such as breaks or bridges during lithography due to optical proximity effects (OPE), at an early 

stage of the design flow. It plays a crucial role in improving manufacturing yield. 

Hotspot detection methods are primarily categorized into lithography simulation, pattern matching and deep learning 

(DL) based approaches[1]. Lithography simulation methods[2] model the lithography process with detailed mathematical 

and physical models and perform accurate computations to identify hotspots, but full-chip lithography simulation is 

computationally expensive and time-consuming, requiring extensive process and design-rule knowledge[3, 4]. Pattern-

matching techniques[5-8] detect hotspots by comparing the layout against a predefined library of hotspot patterns. 

However, in advanced process nodes the diversity of failure modes and the complexity of layout images make it 

extremely challenging to construct a comprehensive and representative hotspot library, and impose stricter requirements 

on feature selection and matching strategies[9]. 

In recent years, DL techniques have been increasingly applied to DFM applications[10-12], bringing notable progress in 

layout hotspot detection[13-18]. DL techniques are capable of learning hidden relations between layout patterns and their 

defect characteristics, greatly improving detection accuracy. Current DL-based methods primarily convert the layout into 

an image and construct complex model architectures to address the hotspot detection problem. However, due to the 

extremely high spatial resolution of layout patterns (e.g. 1 nm), the generated layout image can be exceedingly large. 

Directly resizing these images leads to a severe loss of spatial detail. Consequently, an effective layout representation for 

dimensionality reduction is essential.  
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Existing layout representation methods, such as the Discrete Cosine Transform (DCT)[19] and the squish pattern 

technique[20, 21], suffer from significant limitations. The DCT-based approach, which retains only low-frequency 

coefficients of the layout, often fails to preserve high-frequency details critical to layout hotspot detection, such as right-

angle corners or abrupt variations in metal-line spacing. The squish pattern method exploits the Manhattan geometry of 

layouts by encoding them as a binary presence matrix of layout elements and two numerical matrices for the width and 

height at each location. But the inconsistent data semantics across these channels may impede deep neural network 

training. 

In this work, we propose a novel layout representation method based on singular value decomposition (SVD). The 

method leverages the characteristics of layout patterns to achieve efficient lossless data reduction while preserving key 

topological information from the original patterns, generating high-fidelity layout tensors for deep learning training. The 

main contributions of this paper are as follows: 

1. We introduce SVD as a layout-representation technique that reduces data volume while preserving critical 

topological information of layout patterns. 

2. We demonstrate that SVD can achieve high-rate lossless data reduction compared to converting layout into raw 

images in deep learning training and validate this empirically on public datasets. 

3. We integrate the SVD-based representation with a simple ResNet18[22] backbone to achieve efficient and highly 

accurate hotspot detection, thus validates the effectiveness of SVD in layout representation. 

The remainder of this paper is organized as follows. Section 2 defines the problems of hotspot detection and layout 

representation. Section 3 describes the proposed SVD method in detail, explains why it is efficient for layout 

representation, analyzes the high-fidelity preservation of topological information in the extracted features, and validates 

these features within a simple ResNet18 backbone in hotspot detection. Section 4 presents experimental results for data 

reduction and hotspot detection on public ICCAD datasets. Finally, Section 5 concludes the paper. 

2. PRELIMINARY 

2.1 Lithographic Hotspot Detection 

A lithographic hotspot is a layout clip whose geometric features make it highly susceptible to manufacturing defects 

during photolithography. The hotspot detection problem can be defined as a binary classification task. Let TP, FP, FN 

and TN denote true positives, false positives, false negatives and true negatives respectively. The following metrics are 

used to evaluate the performance of a hotspot detector. 

Definition 1 (Recall). Recall is defined as the fraction of ground-truth hotspots that are correctly detected. 

 
TP

Recall
TP FN

=
+

 (1) 

Definition 2 (False Alarm Rate). False Alarm Rate (FAR) refers to the fraction of non-hotspots incorrectly classified as 

hotspots. 

 
FP

FAR
TP FN

=
+

 (2) 

With these metrics, we formulate the hotspot detection problem as follows: 

Problem 1 (Hotspot Detection). Given a set of layout clips, the goal is to develop a classification model that achieves a 

high recall while maintaining a reasonably low FAR, thereby ensuring that the maximum number of true defects are 

found without introducing an excessive number of false warnings. 

2.2 Layout Representation 

Raw layout data (e.g., GDSII) are high-resolution, Manhattan-geometry designs that are both spatially sparse and rich in 

small but critical geometric features. For DL models to process circuit layouts, the raw layout data must be converted 

into a suitable numerical tensor. A straightforward representation is converting the layout to a high-resolution image. 

However, large-scale layouts tend to be spatially sparse, resulting in significant computational overhead and an increased 

risk of overfitting when processed by DL-based models. Therefore, a layout representation g  maps a high-dimensional 

layout clip l  to a compact tensor T  suitable for model learning utilizing layout properties: 

 : C H Wg l T
    (3) 
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An ideal layout representation method should achieve efficient data reduction to avoid computational overhead in model 

training, and more importantly, it must maintain high fidelity to the original layout. This means that topological features 

critical to hotspot detection must be effectively preserved in the resulting tensor T . 

3. METHOD 

3.1 Utilizing SVD for efficient layout representation 

As illustrated in Fig. 1, singular value decomposition (SVD) is a theorem in linear algebra which states that a layout clip 

represented as a matrix 
m nA   can be factorized as the product of a left orthogonal matrix 

m mU  , a diagonal 

matrix 
m n , and the transpose of a right orthogonal matrix 

n nV  , i.e.  

 
TA U V=   (4) 

The entries on the diagonal of Σ are called the singular values. The columns of 𝑈 and the rows of 𝑉𝑇 are referred to as 

the left and right singular vectors, respectively. Equivalently, the decomposition may be written as a sum of rank-one 

components: 

 

1

k
T

i i i

i

A u v
=

=  (5) 

where k is the number of non-zero singular values, i is the i -th singular value, 
m

iu  and 
n

iv  are its 

corresponding left and right singular vectors, respectively. Furthermore, because the features derived from SVD are 

inherently correlated with the topology of the original layout, the matrices U and V (and their respective column 

vectors iu and iv ) are designated as the layout's row and column information matrices (and vectors). The detailed 

explanation of these terms will be provided later in this work.  

 
Fig. 1. An illustration of SVD for layout representation and its features preserving layout topological structure 

After applying SVD to layout, lossless data reduction can be achieved by discarding zero singular values. We find that 

SVD is especially well-suited for layout representation and enables an extremely high lossless data reduction rate 

compared to converting layout into raw images in model training. Here is a brief explanation: first, the number of 

nonzero singular values of a matrix equals its rank as equation (6). Since U and V are orthogonal, multiplication by 

them does not change the rank of a matrix; therefore, for layout matrix A , ( ) ( )rank A rank=  . The rank of a 

diagonal matrix  equals the number of its nonzero diagonal entries, i.e. the number of nonzero singular values k :  

 ( ) ( ) ( )Trank A rank U V rank k=  =  =  (6) 

Second, layout images are low-rank as equation (7). The rank of a matrix is defined as the maximum number of linearly 

independent rows or columns. Because layout image contains many repeated rows and columns, these rows/columns are 

linearly dependent, making image rank is much smaller than its dimensions:  
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 ( ) ,rank A m n  (7) 

Consequently, most singular values of a layout matrix are zero, and only keeping a small number k  of nonzero singular 

values and their associated singular vectors are sufficient to represent the layout matrix without loss of information. 

 

Beyond lossless data reduction, SVD features also preserve the layout’s topological information. The SVD explicitly 

decomposes the layout matrix into the sum of rank-one terms 
T

i i iu v . Each term is a rank-one matrix formed by the 

outer product of a left and a right singular vector scaled by i , and therefore represents a distinct component of the 

original layout, as shown in Fig. 1. This algebraic structure inherently embeds layout information within the singular 

vectors; specifically, iu encapsulates the row-wise information while 
T

iv summarizes the column-wise information for 

that particular component. The magnitude of the singular value i  reflects the contribution of the component to the 

original layout: large i  corresponds to components that capture overall structure, whereas smaller i  captures fine 

details. Therefore, / iU u  and / iV v  are naturally designated as row- and column-information embeddings of the 

layout; consequently, deep models trained on these SVD-derived features can effectively learn and exploit the 

topological characteristics of the original layout. 

 

3.2 Hotspot detection with SVD features 

To validate the effectiveness of SVD for layout representation, we apply the SVD features to the hotspot detection task 

and compare their performance with raw images and other layout-representation methods under a ResNet18 backbone. 

To enable the backbone network to fully exploit the SVD features, we reorganize them into a 2-channel feature tensor as 

illustrated in Fig. 2. Specifically, we truncate the top 30k =  singular values and sort them in descending order. For 

each selected singular value i , we compute i iu  and i iv , then aggregate all left-side vectors 1{ }k

i i iu =  into 

one matrix and all right-side vectors 1{ }k

i i iv =  into another matrix; these two matrices form the two channels of the 

resulting tensor.  

Each layout clip is processed by this SVD-based representation to produce a two-channel tensor, which is fed into the 

ResNet18 backbone for training. Through a hierarchy of convolutional layers, the backbone jointly captures row-wise 

and column-wise as well as overall and detailed layout features through the reconstructed tensor, and a final fully 

connected layer maps the learned features to a binary probability as the hotspot prediction. Because hotspot examples are 

much rarer than non-hotspots[23, 24], we employ the focal loss[25], which dynamically down-weights easy samples and 

forces the network to focus on hard, misclassified samples and the scarce hotspot samples. During inference, the class 

with the higher predicted probability is taken as the model decision. 

 
Fig. 2. SVD feature tensor generation for hotspot detection. 

To further overcome the imbalance in the dataset, we perform data augmentation on hotspot samples. Owing to the 

symmetry of the lithographic illumination, certain geometric transformations (e.g., flips and rotations) that change the 

orientation of layout patterns do not affect their attributes[26]. Therefore, we apply operations listed in Fig. 3 to every 

hotspot sample in our training set to augment the data. Furthermore, we discover that these transforms correspond to 

simple operations on u  and v . For example, reversing the order of singular-vector components or swapping the 
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corresponding iu  and iv  produces flips and rotations of the layout image, indicating that the layout’s topological 

structure is preserved in the SVD features. Fig. 3 also illustrates the visual effects of these operations on the 

reconstructed patterns. In the figure, iu
represents reverse the order of vector 𝑢𝑖, and the swapping of iu  and iv  is 

shown by switching their position.  

 
Fig. 3. Hotspot data augmentation methods with operations on u and v. 

4.   EXPERIMENTAL RESULT 

4.1 Dataset 

We evaluate the proposed SVD-based layout representation approach for data reduction and hotspot detection on the 

public ICCAD2012[23] and ICCAD2019[24] datasets. Each dataset contains series of layout clips with physical 

dimensions of 1200 nm×1200 nm and resolution of 1nm. 

4.2 SVD data reduction result 

To validate the efficiency of SVD for layout data reduction, we performed SVD on every layout in ICCAD2012 and 

ICCAD2019 and recorded the distribution of nonzero singular values k . As shown in Fig. 4, among the theoretical 

maximum of 1200 singular values only a very small subset is nonzero. This empirical low-rank property underlies the 

efficient lossless data reduction achievable by SVD. We measure the loss data reduction rate ( drR ) relative to storing 

layout as raw images for model training as 

 
( 1)

1dr

n m k
R

nm

+ +
= −  (8) 

where n  and m  are the width and height of the original image (here 1200n m= = ), and k  is the number of nonzero 

singular values retained. On the public ICCAD2012 and ICCAD2019 datasets this method achieves average lossless data 

reduction rates of 98.95% and 98.85%, respectively. 
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Fig. 4. Distribution of the number of non-zero singular values (k out of 1200) in the (a) ICCAD2012 and (b) ICCAD2019 

dataset. 

4.3 Hotspot detection setup 

Hotspot detection experiments were carried out on a workstation equipped with an NVIDIA GeForce RTX 4080s GPU. 

In order to evaluate the quality of various layout representations, the tensors generated from these representation 

methods were trained on a ResNet18 backbone with focal loss to compare their detection performance and runtime.  

Implementation details for the compared representations are as follows: 

⚫ DCT. We follow the procedure in [19] to uniformly partition each layout into 12×12 regions. Each 100×100 patch 

is transformed by the Discrete Cosine Transform (DCT). Coefficients are read out via a zig-zag scan and the first 

32 low-frequency coefficients are retained to produce a 32-channel 12×12 tensor. 

⚫ Squish pattern. Following the referenced squish-pattern method[20, 21], the layout is partitioned respecting the 

Manhattan geometry. Each partition is encoded as a binary presence matrix plus two numerical matrices recording 

local width and height, generating a 3-channel 128×128 tensor. 

⚫ SVD. SVD features are assembled into a 2-channel 1200×30 tensor as Section 3. 

Because hotspot samples are far fewer than non-hotspot samples and geometric transforms like rotations and reflections 

do not alter a pattern’s hotspot label, we augment the training set by applying the operations listed in Fig. 3 to every 

hotspot sample, resulting in an eightfold increase of hotspot instances. To accommodate different input tensor shapes 

produced by the three representation methods while keeping the model capacity comparable, we preserve the key model 

hyperparameters such as number of layers, kernel sizes, etc. and only adjust stride to achieve different pooling strategies 

as necessary. 

4.4 Comparison between layout representation 

Fig. 5 compares the detection performance and runtime of several layout-representation methods and direct raw-image 

processing when trained on a ResNet18 backbone with focal loss. Frame-per-second (FPS) denotes the number of layout 

images processed per second.  

The results show that all three layout representation methods are over 10 times faster than processing raw 1200×1200 

images, satisfying the efficiency requirements for backbone training. Regarding detection performance, on the 

ICCAD2012 dataset, our SVD-based representation attains the lowest FAR of only 0.1% while maintaining high recall. 

On the more challenging ICCAD2019 dataset, the SVD approach achieves the highest recall of 99.6% among all tested 

methods. These results indicate that SVD features offer advantages over other representation method, with the benefit 

becoming more pronounced on harder datasets. 
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Fig. 5. Hotspot detection prformance comparison of different layout representation methods in the (a) ICCAD2012 and (b) 

ICCAD2019 dataset for hotspot detection.  

4.5 Comparison with state-of-the-art 

We further compare the simple SVD and ResNet18 detection framework against state-of-the-art (SOTA) methods, with 

results shown in Table 1. On ICCAD2012, our SVD method achieves a superior balance of recall and FAR. Compared to 

direct detection with ResNet in [26], it lowers the FAR by 3.8% at a comparable recall. On the more difficult 

ICCAD2019 dataset, the SVD method attains the highest recall, increasing the average recall of competing methods by 

16.9% while maintaining a comparable FAR.  

Under the simple backbone network, the SVD-based layout representation can also achieve detection performance that 

matches or surpasses more complex SOTA architectures. The experimental results validate that the proposed SVD layout 

representation efficiently reduces layout data while preserving critical topological information necessary for reliable 

hotspot detection. 
Table 1. Comparison with state-of-the-art methods in the (a) ICCAD2012 and (b) ICCAD2019 dataset for hotspot detection. 

(a) The ICCAD2012 Dataset  (b) The ICCAD2019 Dataset 

Methods Recall (%) FA (%)  Methods Recall (%) FA (%) 

IWAPS' 2022[26] 98.0 3.9  TODAES' 2022[16] 87.2 9.7 

DATE' 2023[27] 96.2 6.4  TCAD' 2020[28] 80.9 2.5 

DAC' 2024[17] 98.5 8.3  DATE' 2023[27] 91.6 8.6 

GLSVLSI' 

2024[29] 
88.3 0.2  GLSVLSI' 

2024[29] 
62.3 3.7 

TODAES' 2025[9] 98.1 4.0  TCAD' 2025[30] 91.3 8.4 

TCAD' 2025[30] 99.0 5.8  SVD (Ours) 99.6 9.7 

SVD (Ours) 98.0 0.1     

 

5. CONCLUSION 

In this paper, we introduced a novel SVD-based layout representation for lithographic hotspot detection to overcome the 

limitations of existing layout representation methods. By leveraging the inherent low-rank property of layout images, our 

method achieves an extremely high lossless data reduction rate compared to storing layout as raw images for model 

training. More importantly, the SVD features effectively preserve the critical topological information of the original 

layout patterns. Experimental results on public ICCAD datasets demonstrate that when integrated with a ResNet18 

backbone, our SVD-based representation not only enhances computational efficiency but also achieves hotspot detection 

performance that is comparable to or surpasses that of more complex, state-of-the-art method. This validates that the 

proposed SVD representation is a highly effective approach for layout data reduction while maintaining the high-fidelity 

features essential for accurate hotspot detection. 
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