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Abstract. Most unsupervised anomaly detection methods learn a single
decision boundary to distinguish samples in the training dataset, neglecting the
variation for normal samples even in the same category and a distribution bias
exists between the test set and the train set in the real world. Therefore, we
propose an Adapted-MoE which contains a routing network and a series of
expert models to handle multiple distributions of same-category samples by
divide and conquer. Specifically, we propose a routing network to route same-
category samples into the subclasses feature space. Then, a series of expert
models are utilized to construct several independent decision boundaries. We
propose the test-time adaption to eliminate the bias between the unseen test
sample representation and the feature distribution learned by the expert model.
Our experiments are conducted on a dataset that provides multiple subclasses
from three categories, namely Texture AD. The Adapted-MoE significantly
improves the performance of the baseline model, achieving 2.18%-7.20% and
1.57%-16.30% increase in [-AUROC and P-AUROC, which outperforms the
current state-of-the-art methods. Our code is available at

https://github.com/ray3572/AdaptedMoE.

Keywords: Anomaly Detection, Mixture of Experts, Test-Time Adaption,
Unseen Sample, Distribution Bias.

1 Introduction

Anomaly detection recognizes anomalous images and detects anomalous regions,
which is a essential method in industrial quality applications [2, 9]. Because ob-
taining and labeling anomalous samples is difficult in the real world, unsupervised
anomaly detection (UAD) which discriminates outliers by learning normal sample
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features has gradually become the focus of research [4, 8, 16]. Motivated by the fact
that normal samples are easy to collect, many methods learn the features distribution
of normal samples by reconstructing them recently [13,19].These methods assume
that the reconstruction network can distinguish between representations of anomalous
samples based on distributions learned from normal samples, thereby establishing the
decision boundary. Other methods leverage synthetic anomalous images to train deep
learning models, enabling them to learn discriminative image features effectively
[18]. These methods intensely depend on the quality of the synthetic anomaly images
as well as on more empirical knowledge about the defect patterns. Some methods also
use memorybank [5,11,14] to store features of normal samples and discriminate
anomalous samples by calculating feature similarity. These methods ignore the
existence of unseen samples within the testing process. We summarize these current
methods as shown in Fig. 1, where the methods uniformly learn representations distri-
bution for normal samples and build a single decision boundary in the same category
based on the distribution. In the test time, samples outside the decision boundary are
considered anomalous samples.
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Fig. 1. Existing methods construct single decision boundary by learning representations of
normal samples, ignoring variations in the feature distribution of samples within the same
category as shown in the Texture AD-Cloth [7]. Moreover, the test dataset still has a massive
distribution of unseen samples. Existing datasets (e.g., MVTec AD dataset [2]) in which similar
samples are all in the same distribution are illustrated by Sample-a, Sample-b, and Sample-c.

The aforementioned methods demonstrate optimal performance due to the consistency
in the training datasets and exhibit minimal distribution bias between the train set and
test set (e.g. Sample-a, Sample-b, and Sample-c from MVTec in Fig.1). However, the
real samples are affected by variations in the lighting conditions, equipment, camera
position, and other factors during the acquisition process. It results in a variation in
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the distribution of the samples used to learn the representations, as well as the samples
to be detected. As shown in Fig. 1, practical applications suffer from a large number
of samples in the same category that are still “novel type” (e.g. different color,
material in Texture AD-Cloth) exacerbating the variation in the train set. Furthermore,
it is possible that the test data and the training data, which belong to the same
category, may exhibit distribution bias. Unseen normal samples may be projected
outside the single decision boundary, potentially leading to significant inaccuracies.
In this paper, we formulate the mentioned issue in terms of two definitions. (1) Var-
ious complicated feature distributions exist in the training samples. As shown in Fig.
1, samples in Texture AD-Cloth are collected from the same category (cloth), but
each sample is in a completely independent data distribution due to color and material
differences. It indicates that a single decision boundary in the training process is not
sufficient to distinguish all samples of the same category.(2) Distribution bias in the
test set and train set for normal and anomalous samples. As shown in Fig. 1, the test
set samples are unseen compared to the training set in Texture AD-Cloth. The
application of the decision boundary derived from the training samples has been
demonstrated to result in inconsistencies and inaccuracies.

As a significant number of real samples are excluded within the dataset, we
propose a new method called Adapted Mixture of Experts (Adapted-MoE) to solve
the above issue. We assume that a random normal sample has a distribution with a
certain pattern in the feature space. We leverage the mean and variance of the normal
samples to unify the feature embeddings under the same distribution as the
learned specific pattern before inputting them into the expert model via a
normalization method. The major contributions of this paper are summarized
as follows:

— To our knowledge, our proposed Adapted-MoE firstly
investigates the challenging problem of variation in the
train set and bias between the train set and test set for
anomaly detection.

— We propose a MoE model for learning normal sample
feature distribution for different subclasses. Moreover, we
also designed a routing network based on representation
learning to distinguish normal samples. A simple and
effective test-time adaption is proposed to solve the
unseen sample bias in the testing process.

— We conduct extensive experiments to confirm the
effectiveness of the Adapted-MoE on the Texture AD
benchmark. The experimental results show that the
proposed method significantly outperforms the
previous state-of-the-art.
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2 Proposed Method

The proposed Adapted MoE is elaborately introduced in this section. As shown in
Fig. 2, Adapted-MoE consists of a feature extractor, a routing network, test-time
adaption, and several expert models. Specifically, We adopt fixed pretrained CNNs
on ImageNet [3] as the feature extractor. The features from several stages are
collected. Then these features are resized to the same size and concatenated across
channel dimensions to restructure the feature maps. Subsequently, the expert model
with the highest correlation is assigned via the routing network. The test-time
adaptation method is then employed to transfer the feature to the space that can be
handled by the selected expert model. Finally, anomaly detection is achieved by the
expert model.

a) Training Pipeline Feature Embeddings Mixture of Experts
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Fig. 2. Overview of Adapted-MoE. First a frozen backbone is employed to conduct feature
extraction on the samples. Subsequently, the extracted feature embeddings are divided into
different expert models for training through a routing network, where the training loss consists

of the routing 1oss Louing and the loss of the expert model Leger. In the testing phase, Test-Time
Adaption calibrates the routed features to eliminate distribution bias before anomaly detection.

2.1  Mixture of Experts

Most anomaly detection methods construct the feature space based on normal
samples. However, the feature distribution of normal samples in the same category is
still diverse, and a single decision boundary will lead to an inaccurately determined
outcome. Therefore, we propose a mixture expert model to divide normal samples
from the same category into multiple expert models to learn the different feature
distributions of multiple subclasses during the training process.Firstly, given the i
training sample’s feature maps X; € RO™W where C, H and W represent the
channels, height and width of feature maps, feature embedding xi are firstly obtained
by a projection layer and a global average pooling(GAP) layer 94" . The projection
layer is composed of a 3 X 3 convolution W, b; to projection feature maps from
ImageNet to the anomaly detection feature space:

= (a *) (1
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Inspired by [15], we classify m training samples using a designed center loss in our
routing network.

2 eWiXi

I-routing = Zirgoa Xi—Ck = — (1 - a)inOQ (W) 2
where m represents the mini—batch in the training process, cix denotes the center of the
kwx subclass in the training set and is updated per steps, y; represents the subclass label
for i normal sample, n is the number of subclass in the training set and also the
number of experts, w € R is the classifier matrix and « is weight adjustment
parameter, with a value range of 0 to 1. As shown in Fig. 3, the samples in the same
subclasses are converged to the center of the subclasses by minimizing the above
objective function, and the samples from different subclasses will be far away from
each other in the feature space. During the inference process, x; is routed to the expert
model with maximize xi * ¢ which denotes the cosine distance between x; and ¢k, and
the final score will be calculated by the softmax function.

|
I
I
I
I
I
I
I
I
A |
) ! |
) ' |
k<] : |
$ | !
Q ]
B8 [ |
S ' |
“ i Ammee- oo omeee > |
Decision , |
Boundaries? !
A A I
H ' \ |
H 1
1 i |
! | |
! | [
! ' I
: i !
i Ao >,

e e —

Fig. 3. Mixture of Experts. For a mini-batch of feature embeddings, the center loss is utilized in
the routing network to divide them into different subclasses during the training process. Simple
expert models construct multiple decision boundaries in independent feature spaces for
different subclasses.

After obtaining the feature embedding of the subclasses, we simply design a multi-
layer perceptron as an expert model to construct decision boundary for independent
subclass. We use feature embedding to randomly generate noise vectors and train
expert models based on synthetic anomaly detection methods and the loss of expert
Lexpers same as [10]. The total loss Lo is described by:
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I-total = I-routing + 221 Lgxpert (3)

Ultimately, the final anomaly detection score is obtained by aggregating the results of
multiple expert models as follows:

K )
i Wi XestEXpertt(Xiest)

[
2 Wi Xtest

result = 2 4
Normalization. It is worth emphasizing that due to the similarity of the anomaly
detection samples, the feature distribution of the different subclasses that are
projected into the feature space is not uniform [12]. Therefore, we adopt the
normalization to constrain the value range of the feature embedding x;. It effectively
separates the feature of different subclasses so that they can be more evenly
distributed in the feature space, which can be expressed as X; = z—: . As mentioned
above, the routing network is scored by cosine similarity and softmax of the classifier
matrix w and feature embedding x;. Benefiting from the monotonicity of softmax, the
normalized feature embedding does not affect the routing score.

2.2 Test-Time Adaption

As shown in Fig. 4, the feature space learned by the expert model based on the
existing training set still suffers from a bias in the feature distribution of the unseen
subclasses. We assume that the feature distributions of the unseen subclasses have a
certain feature distribution in feature space. Thus their decision boundaries can be
obtained by simply eliminating the inconsistency of the feature distributions in the
inference process. In this paper, we define this bias as distribution distance and
propose a test-time adaptation method to eliminate the bias between unseen samples
and training samples.
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Fig. 4. Test-Time Adaptation. Since the test samples do not appear in the training phase, the
distribution of the samples at the testing has bias with the distribution of the samples learned by
the expert model. We eliminate the distance between the two distributions by Test-Time
Adaptation, to unify the position of the decision boundary.

Firstly, given the feature embedding x.: of the test sample, the closest subclass center
embedding c; of the test sample in the feature space can be found by the routing
network. As shown in Fig. 4, the test sample distribution and the learned distribution
are similar but have a distance gap. Since the ks expert model is based on training
data with center c¢; and standard deviation which is denoted as s#d to construct the
decision boundary. Therefore, we calibrate the distribution of test embeddings Xies to
the feature space of the ku expert model to unify the decision boundary:

' (Xtest—mean (Xgest)) *std
= +
X test std (Xtest) Cxk (5)
' — Xtest
Xitest = > ©)

Xtest

We use the center of the training data to make the feature distributions with the same
measure by mean and variance and subsequently normalize the corrected embeddings
X st to obtain the final decision boundary.

3 Experiments

3.1 Datasets and Metrics

Datasets As shown in Fig. 1, existing datasets sampling data are similarly distributed
in the same category (e.g., MVTec [2]). To validate the proposed Adapted-MoE, we
use the dataset named Texture AD benchmark [7] in the experiments. The Texture
AD benchmark§ is an anomaly detection dataset, which contains sampled images and
defect annotations for three categories, cloth, metal, and wafer. Significantly, the
Texture AD dataset provides multiple different types in subclasses under each
category providing samples of various distributions. To validate our method, we
choose 10 subclasses for training and 5 unseen subclasses for testing in the cloth
dataset, 4 unseen subclasses in the wafer dataset and 3 unseen subclasses in the metal
dataset. All images in this dataset are captured using a high-resolution industrial
camera (MV-CS200-10 GC) at 5472 x 3648 pixels and cropped to 1024 x 1024.

Metrics For anomaly detection results, we use the Area Under the Receiver Operating
Curve (AUROC) to evaluate our proposed model comprehensively same as other
works. Image-level anomaly detection performance is measured via the standard
AUROC, denoted as I-AUROC. Moreover, a pixel-level AUROC (P-AUROC) is
used to evaluate the anomaly localization.
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3.2 Implementation Details

All experiment codes are implemented based on the Pytorch framework and all the
models are trained with one NVIDIA GeForce RTX 4080 (16 GB memory) for
acceleration. We validated the effectiveness of the Adapted-MOE using SimpleNet
[10] as our baseline. For the baseline, a pretrained WideResNet50 [17] is used already
as a feature extractor which is frozen in both training and testing processes. For fair
comparisons, the SimpleNet with Adapted-MoE is trained for 160 epochs with a batch
size of 8 and the learning rate is from 0.0001 to 0.0002. In Gaussian noise N (0, 6°), ¢
is set by default to 0.015.

3.3  Comparisons with State-Of-The-Arts

We compare the proposed Adapted-MoE with a number of state-of-the-art ap-
proaches on Texture AD benchmark, including SimpleNet [10], EfficientAD [1],
PyramidFlow [6], DREAM [18], Mean-shifted [12] and MSFlow [20]. Firstly, we
compared the performance of anomaly detection. As shown in Table 1, excellent
results are achieved by our Adapted-MoE on most of the unseen subclasses in three
categories. Moreover, our proposed method outperforms other methods in average I-
AUROC accuracy on the test set of cloth, wafer, and metal by 67.53%, 58.58%, and
66.12%, respectively. To further demonstrate the excellence of our method, we
secondly compare the capability of anomaly localization on novel unseen data. We
compare the values of P-AUROC with state-of-the-art methods on three categories in
Texture AD. The results show that our method outperforms existing methods in
unseen subclass performance for each category as well as average accuracy. The
average P-AUROC of our proposed method is 76.05%, 63.40%, and 73.76% for
cloth, wafer, and metal. The results of visualization compared with SOTA are detailed
in the Appendix.

Table 1. Image-AUROC (%)/Pixel-AUROC (%) comparison with the state-of-the-art methods
on Texture AD dataset.

SimpleNet PyramidFlow DRAEM Mean-Shift MSFlow EfficientAD
(2023) (2023) (2021) (2023) (2024) (2024)

subclass] 65.08/58.30  57.88/68.00  57.58/60.99  66.22/-  50.00/56.11  65.65/62.76 57.98/80.94
subclass2 59.26/51.52  63.18/57.06  50.21/65.36  33.66/-  54.01/63.14  76.98/58.92 62.31/68.41
subclass3 58.83/63.48  60.74/60.74  55.44/56.91 66.21/-  50.00/51.66  55.69/47.08 84.61/74.43
subclass4 70.40/70.68  59.39/57.26  58.01/53.45  65.69/-  50.00/47.44 42.38/38.75 60.77/76.50
subclass5 68.47/54.47  49.72/34.84  55.95/77.03  39.54/-  50.14/42.23  72.20/61.77 71.96/79.95

Average 64.41/59.69  58.18/55.58  55.44/62.75  54.26/-  50.83/52.12  62.58/53.86 67.53/76.05

subclass] 52.11/57.18 55.54/51.23  55.69/44.91 52.83/- 51.19/44.91 50.28/55.76 | 67.30/60.74
subclass2 59.66/66.16  43.35/39.47  57.09/34.10  53.29/-  49.78/34.10  42.25/33.98 55.95/60.81
Wafer |subclass3 53.66/57.58  52.76/51.52  59.22/35.01 55.44/-  53.64/35.01 50.23/51.53 51.71/65.40
subclass4 50.68/53.40 46.36/44.63  52.46/43.59  48.28/-  50.00/43.59 45.51/40.02 59.36/66.63
Average 54.03/58.58  49.50/46.71  56.12/39.40  52.47/-  51.15/39.40 47.07/39.40 58.58/63.40

subclassl 59.07/62.27 52.87/53.42  52.07/58.31  44.34/- 62.90/65.37  65.27/59.69 65.60/73.98
subclass2 59.87/58.33  48.74/48.86  56.32/51.53  47.39/- 53.54/57.34  55.46/51.04 66.19/69.48
Metal |subclass3 57.83/58.97 58.92/57.67  51.48/57.31  45.04/- 59.78/60.37  68.73/54.91 66.57/77.81

Average 58.92/59.86  53.51/53.31 53.29/55.75  45.59/- 58.74/61.02  63.30/55.21 66.12/73.76

Category| subclass Ours

Cloth
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3.4  Ablation Studies

In this section, we present ablation studies on the proposed method, including the
structure of Adapted-MoE, the fop k number of MoE and the choice of the loss
function in the routing network. The baseline for all ablation experiments in this
section is SimpleNet.

Table 2. Ablation Study of Structure for Adapted-MoE.

MoE YTTA +Norm Average P-AUROC(%)

Cloth Wafer Metal

- - - 59.69 58.58 59.86
\ - - 53.93(-5.76) 58.10(-0.48) 60.27(+0.41)
- \ - 65.96(+6.27) 59.26(+0.68) 60.15(+1.57)
\ - \ 56.88(:2.81) 56.23(-2.35) 60.56(+0.70)
- \ \ 74.36(+14.67 59.73(+1.15) 63.17(+3.31)
\ \ - 61.45(+1.76) 54.42(4.16) 56.74(:3.12)
\ \ \ 76.05(+16.3) 60.15(+1.57) 69.10(+9.24)

Table 3. P~ AUROC(%) / I-AUROC(%) for Loss Choices.
Loss Cloth Wafer Metal
Softmax 74.92/55.48 58.97/53.24 69.14/54.92
CenterLoss 76.05/67.53 60.15/56.21 69.10/55.50

The Structure of Adapted-MoE. To verify the validity of our proposed method, we
conducted ablation experiments on cloth data, wafer data and metal data in the
Texture AD dataset. As shown in Table 2, using the MoE individually ignores the
bias between the distribution of test samples and the distribution of samples that have
been learned, leading to shortcomings in anomaly detection and anomaly location. In
cloth data and wafer data, independent usage of Test-Time Adaption for feature
embeddings can improve anomaly location performance, but the anomaly detection
capability is greatly reduced due to the feature embeddings are not well assigned to
the corresponding subclass space. Due to the small inter-class differences of the
subclasses in the metal data(proved by visualization in the Appendix), MoE and
normalization will lead to the wrong division of the subclasses into subspaces and
only Test-Time Adaptation is needed to bring accuracy increase, 13.9%/7.20% of
average P-AUROC and [-AUROC. Using both MoE and Test-Time Adaption will
make the distribution of test samples not normalized correctly. Therefore, we
introduced all the proposed methods into the baseline, which eventually improved
16.3%/3.12% and 1.57%/2.18% of average P-AUROC and I-AUROC on the cloth
and wafer datasets, respectively. More details ablation results of subclasses can be
found in the Appendix.Furthermore, we provide the ablation experimental results of
the final proposed method for all subclasses in the cloth dataset. As shown in Fig. 5,
the implementation of our proposed method improves the performance of anomaly
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detection in most of the subclasses by up to 25.48%. For anomaly location, our
approach improves the performance of all subclasses with a maximum improvement
0f 25.48% and a minimum improvement of 5.82%.

71.96%
subclass 5 subclass 5
68.47%

+3.49%
60.77%

subclass 4 subclass 4

84.61%
subclass 3 subclass 3
+25.78%  58183%

62.31%

subclass 2 subclass 2 il

59.26% .
3 0s% ) Bascline

57.98%
subclass | subclass |

65.08%

0’ 20 40 60 80 100 0 20 20 60 "

Pixel-AUROC(%) Tmage-AUROC(%)
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Fig. 5. Ablation experiments for subclasses on cloth dataset. For the [LAUROC metric, our
method improves on some unseen subclasses by 3.05%-25.78%. For the P-AUROC metric, our
method improves on all unseen subclasses by 5.82%-25.48%.

The Top k for Mixture of Experts. The routing network identifies the expert model
that is most closely associated with the test data, thereby minimizing the distance
between the test samples. Furthermore, this approach can be employed to select the
Top k expert models that are most closely aligned with the test data. As shown in Fig.
6, we perform ablation experiments on the cloth dataset for Top k expert model
choices. The results show that in selecting Top4 expert models is more beneficial to
the overall model performance.
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80 - —A— subclass3
—w— subclass4
—&— subclass5

75 4

70

65

60 —

554

50

T N T N T N T N T
Topl Top2 Top3 Top4 Top5

Fig. 6. Ablation experiments for 7op k on cloth dataset. The results show that our method is
optimal in choosing Top4.
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Choice of Loss Function in Routing Network. Due to the small scale of variation
within the same category of data, the loss function determines for routing networks
whether they can better distinguish between different subclasses. We compared the
effect of softmax loss and center loss on the average performance of the three
categories of datasets, as shown in Table 3. The results show that center loss can
better improve the performance of the routing network.

4 Conclusion

In this paper, we propose an Adapted-MoE for addressing the data variation and bias
in the same category for anomaly detection. We propose a Mixture of Experts that
divides same-category samples into different feature spaces via a routing network,
with each expert model constructing its own independent decision boundary. We use
normalization to make the samples more uniformly distributed in the feature space. In
addition, we propose a Test-Time Adaption to eliminate the bias between the
distribution of test samples and learned features. Extensive experiments on Texture
AD demonstrate that Adapted-MoE can be simply and efficiently implemented for
anomaly detection and localization.
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