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Abstract—Recently, machine learning-based techniques have
been applied for layout hotspot detection. However, existing
methods encounter challenges in capturing the decision boundary
across the entire dataset and ignore the geometric properties and
topology of the polygons. In this paper, we introduce CLI-HD,
a novel contrastive learning framework on layout sequences and
images for hotspot detection. Our framework improves the ability
to distinguish between hotspots and non-hotspots by similarity
computations instead of a single decision boundary. To effectively
incorporate geometric information into the model training pro-
cess, we propose Layout2Seq, which encodes polygon shapes as
vectors within sequences that are subsequently fed into the CLI-
HD. Furthermore, to better represent topology information, we
develop an absolute position embedding, replacing the standard
position encoders used in Transformer architectures. Extensive
evaluations on various benchmarks demonstrate that CLI-HD
outperforms current state-of-the-art methods, with an accuracy
improvement ranging from 0.82% to 4.77% and a reduction in
false alarm rates by 4.9% to 23.18%.

I. INTRODUCTION

With the rapid development of semiconductor techniques,
the shrinking of transistor feature sizes and the increasing
size of dies present significant challenges to Design for
Manufacturability (DFM). Hotspot detection is introduced as a
critical procedure in DFM to identify potential defect patterns
early. Lithography simulation techniques can accurately detect
hotspot patterns, but they consume a large amount of time for
simulation and are not applicable to chip fabrication. Other
works were based on pattern-matching methods to identify
hotspots with similar patterns by retrieval or clustering. Such
methods cannot cover hotspots outside the pattern or layout
libraries [1], [2].

Recently, machine learning-based methods have been ap-
plied in DFM [3], [4] and achieved impressive progress in
hotspot detection [5], [6]. As shown in Fig. 1(a), existing
methods convert the layout files into binary images and employ
supervised learning to classify HotSpot (HS) and Non-HotSpot
(NHS). However, these methods utilizing convolutional neural
networks (CNNs) to distinguish hotspots are limited by the
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Fig. 1. Illustration of the hotspot detection flow. (a) The pipeline of existing
supervised learning-based methods. (b) The pipeline of our proposed CLI-HD.

receptive field in acquiring the global topology information
of the layout images. To represent the global topology, others
utilize polygons to construct a layout graph and perform pat-
tern graph classification with graph neural networks (GNNs)
for hotspot detection [7], [8]. Nevertheless, they decompose
the polygon into multiple rectangular nodes, which introduces
additional complexity and results in the shape information loss
of the polygon. Generally, existing CNN-based and GNN-
based methods rely on supervised learning, which tends to
suffer from a high false-alarm rate when trained to construct
a single decision boundary across the entire dataset with very
few hotspot samples [6].

Beyond image and graph-based approaches, alternative lay-
out representations have been explored in other DFM appli-
cations. A sequence pattern representation [9] is proposed for
layout pattern generation that attempts to learn the shape and
spatial information of patterns by the Transformer. However,
there is a representation gap when converting coordinates
and edge values to language token embedding. In addition,
it ignores the position of polygonal patterns. Other methods
represent a layout clip by using a topological matrix and two
vectors [3], [4]. This representation is not flexible for existing
deep neural networks [9]. To the best of our knowledge, the



shape (e.g., height, width, orientation) of individual polygons,
along with the topological relationships (e.g., edge2edge,
side2side) among multiple polygons, are critical factors for
identifying hotspots [4]. Thus, the aforementioned supervised
learning methods and layout representation struggle to con-
struct robust statistical models for hotspot detection.

Considering the existing issues, we design a novel con-
trastive learning framework on layout sequences and images
for hotpot detection, CLI-HD, which effectively distinguishes
between hotspots and non-hotspots through similarity com-
putations while incorporating geometric representations and
topological information. The main contributions of this paper
are summarized as follows:

• We propose a novel contrastive learning framework for
hotspot detection, that leverages similarity computations,
thereby eliminating the need to establish a unified deci-
sion boundary across the entire dataset.

• We present Layout2Seq, a novel sequence representation
for layouts that efficiently converts polygons into vector
formats, facilitating the extraction of geometric features.
This approach can also provide the possibility for other
machine learning-based DFM applications.

• We develop the Absolute Position Embedding (APE)
method for Transformer-based sequence models, specifi-
cally designed to efficiently encode the topology relation-
ships of multiple polygons based on their position context
within the layout.

• Experimental results demonstrate that CLI-HD signifi-
cantly improves the discrimination of hotspots through
contrastive methods, achieving an accuracy improvement
of 0.82% to 4.77% and a reduction in false alarm rates
ranging from 4.9% to 23.18%. Furthermore, CLI-HD
can be effectively fine-tuned with a single linear layer,
yielding remarkable performance in hotspot detection.

II. PRELIMINARIES

The lithographic process utilizes a mask to transfer a
precisely designed layout pattern onto the wafer. Sensitive
patterns are particularly susceptible to yield reduction caused
by variations in the manufacturing process. These patterns are
defined as hotspots within the layout [5]. In our paper, hotspot
detection is considered as a binary classification task for the
layout clips. Different from [6], [8], [10], we are dealing
with layout clips where the hotspot locations are random
and may include multiple hotspots, rather than just a single
centered marker. It will test the model’s ability to learn non-
fixed hotspot patterns making it more relevant to real-world
applications relevant to real-world application scenarios. The
following definitions and metrics are used to evaluate the
performance of a hotspot detector.

Definition 1 (Accuracy). The ratio of correctly identified
hotspots to the total number of ground truth hotspots.

Definition 2 (False Alarm). The ratio of non-hotspot clips
that are detected as hotspots by the classifier.

To match the evaluation metrics above, we formulate the
hotspot detection problem as follows.

Problem 1 (Hotspot Detection). Given a collection of layout
clips containing hotspot and non-hotspot patterns, our goal is
to learn a feature vector from building image representations
and sequence representations. Based on this vector we can
use contrastive learning to distinguish hotspots or fine-tune a
classifier for detecting hotspots.

III. METHODOLOGY

A. Overview
As shown in Fig. 1(b), we initially obtain the image

representation of the layout, consistent with previous work.
To construct a geometric representation of polygons, Lay-
out2Seq is proposed to transform the shape of each polygon
into a vector and combine multiple polygon vectors into a
sequence corresponding to a layout clip. Leveraging images
and layout sequences, a contrastive learning framework is
designed to generate a unified representation aligning visual
features with the geometric properties of polygons. In the
contrastive network, we discard the wrong position encoder
in the Transformer and develop the APE for introducing the
centroid location of polygons.

B. Contrastive learning framework in CLI-HD
As illustrated in Fig. 2, our proposed framework con-

sists mainly of two key components, specifically image en-
coder I (·) and sequence encoder S (·). Motivated by the
[11], our objective is to jointly train I (·) and S (·) using
pairs of binary layout images and corresponding sequence
representations, ensuring that the learned image embedding
FI = [f I

1 , f
I
2 ..., f

I
N ] ∈ RN×D are effectively aligned with the

sequence embedding FS ∈ RN×D, where N denotes the
batch size and D represents the embedding dimension. Ba-
sically, a ViT-based model [12] is utilized to encode binary
layout images, generating their corresponding image latent
representations. In our proposed, the sequence encoder S (·) is
implemented using a transformer architecture, which generates
the sequence embedding FS from the output of Layo ut2Seq.
Specifically, for the given image-sequence pairs (XI

i ,X
S
i ), the

embedding f I
i and fS

i can be computed as follows:

f I
i , f

S
i = Proj(I(XI

i )),Proj(S(XS
i )) (1)

where Proj(·) denotes the projection layer. During training
process, we compute the loss function of image-to-text LI→S

as:

LI→S = − 1

N

N∑
i=1

log
exp(sim(f I

i , f
S
i )/τ)∑N

j=1 exp(sim(f I
i , f

S
j )/τ)

(2)

and the text-to-image contrastive loss LS→I :

LS→I = − 1

N

N∑
i=1

log
exp(sim(fS

i , f
I
i )/τ)∑N

j=1 exp(sim(fS
i , f

I
j )/τ)

(3)

where the τ is the temperature parameter and sim (·) denotes
the similary function which is calculated as:

sim(f I
i , f

S
i ) =

f I
i ·

(
fS
i

)T∥∥f I
i

∥∥ · ∥∥fS
i

∥∥ (4)



a)  Training pipeline b)  Testing pipeline
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Fig. 2. The framework of contrastive learning. a) The training process of the constrastive learning for the hotspot detection. b) The simple testing process of
our proposed framework.
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Fig. 3. Illustration of Layout2Seq.
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Fig. 4. Illustration of absolute position embedding in sequence encoder.

The total contrastive loss Lcon in Fig 2(a) is calculated as:

Lc =
LI→S + LS→I

2
(5)

This loss function is designed to optimize the model by
increasing the similarity between matched pairs of representa-
tions, (f I

i , f
S
i ), while simultaneously decreasing the similarity

between mismatched pairs, (f I
i , f

S
j ), for i ̸= j.

As shown in Fig 2(b), given a layout image XI , the
Layout2Seq is employed to extract both the hotspot sequence
XS

hs and the non-hotspot sequence XS
nhs during the inference

phase. These sequences, along with the image itself, are sub-
sequently encoded via separate image and sequence encoders
to generate their corresponding latent embedding, denoted as

(f I , (fS
hs, f

S
nhs)). The similarity scores between the image

embedding and each sequence embedding are then computed
to facilitate category assignment.

Algorithm 1 Layout2Seq
Require: a set of polygons for the layout clip {P k}lk=0, the

polygon number of the layout clip l, the sequence context
length L, the label of the layout Ŷ .

Ensure: the sequence for the i-th layout clip XS
i .

1: Initialize empty sequences XS
i ← ().

2: for k = 1 to l do
3: Initialize empty sequences Vk

i ← ();
4: Rendering a binary image Ik by polygon P k;
5: Compute M̃k

pq,Huk
i by Equation(6)(7)(8)(9) and Ik;

6: {v1 ∼ v7} = {M̃k
20, M̃

k
11, M̃

k
02, M̃

k
30, M̃

k
21, M̃

k
12, M̃

k
03};

7: Vk
i ← {v1 ∼ v7};

8: {v8 ∼ v14} = {Hu1,Hu2,Hu3,Hu4,Hu5,Hu6,Hu7};
9: Vk

i ← {v8 ∼ v14};
10: a = Area(P k), p = Perimeter(P k);
11: wbbox, hbbox = getBoundingRect(P k);
12: v15 = p/a,v16 = a/(wbbox × hbbox);
13: v17 = isContourConvex(P k);
14: Vk

i ← {v15, v16, v17};
15: XS

i ← Vk
i ;

16: end for
17: lcur = len(XS

i );
18: for l = lcur to L do
19: if Ŷ = HS then
20: XS

i ← {1}17;
21: else if Ŷ = NHS then
22: XS

i ← {−1}17;
23: end if
24: end for
25: return XS

i .

C. Layout to Sequence

As shown in prior work [5], [6], converting layout files into
their corresponding binary images is a straightforward task.
However, to effectively capture geometric information from
polygon, we propose a novel approach, called Layout2Seq.



This method transforms layout files into sequences, thereby
enhancing the extraction and analysis of geometric features.

As shown in Fig. 3, we extract polygon coordinates from
the original layout files and systematically parse each polygon
using a vectorized polygon method. Image moments are ex-
tensively employed in computer vision and image processing
to characterize object shapes [13]. Therefore, for each polygon
P k, where k is the index of the polygon, we generate a binary
image Ik using the polygon’s coordinates. Subsequently, the
geometric moment Mk of the Ik is computed by:

Mk
pq =

W∑
x=0

H∑
y=0

xp · yq · Ik(x, y) (6)

where W and H represent the width and height of Ik, p and
q denote the order of the moment. We further compute the
central moments Ck as:

Ck
pq =

W∑
x=0

H∑
y=0

(x− Mk
10

Mk
00

)p · (y − Mk
01

Mk
00

)q · Ik(x, y) (7)

where M00, M10 and M01 can be used to compute the x-
coordinate and y-coordinate of the centroid. For scale-invariant
moments which are useful for comparing shapes regardless
of their size, we compute the normalized moments M̃k as
follows:

M̃k
pq =

Ck
pq

(Mk
00)

(p+q)/2+1
(8)

The {M̃k
20, M̃

k
11, M̃

k
02, M̃

k
30, M̃

k
21, M̃

k
12, M̃

k
03} are incorpo-

rated into the polygon vector Vk as components {v1 ∼ v7}.
It is well known that polygons in hotspot patterns exhibit

geometric invariants, such as rotational invariance and other
transformation properties. In our work with Layout2Seq, we
utilize Hu’s seven moments [13] to encapsulate the shape
invariants of polygons, thereby enhancing robustness against
geometric transformations. The Hu’s moments can be calcu-
lated as:

{Hui}7i=1 = {fi(M̃pq)}7i=1 (9)

where fi is specific function or formula (non-linear combi-
nation) of the normalized moments M̃k

pq . The detailed cal-
culations of the seven Hu moments can be found in [13].
Additionally, we have incorporated area-perimeter ratio v15,
minimum bounding rectangle v16, and convexity v17 to more
accurately characterize the geometric properties of polygons.
Consequently, for each polygon, we derive a comprehensive
vector of geometric information, denoted as Vk

i , which in-
cludes a total of 17 values.

For the final sequence XS ∈ RL×17, where L denotes the
length of the sequence, we insert an additional class vector to
facilitate the similarity calculation in the contrastive learning.
We assign a value of +1 to the category vectors for clips
corresponding to the hotspot, while for all other cases, we
assign a value of −1. Ultimately, l polygon vectors, along
with their corresponding category vectors, collectively consti-
tute the sequence XS . The complete Layout2Seq pipeline is
detailed in Algorithm 1.

Algorithm 2 Training and testing for our proposed
Training process:
Require: Training pair set of layout representations
{XI

i ,X
S
i }Ni=0, where XS

i is from Alogorithm 1.
Parameters: An image encoder L, an sequence model S.

1: Initialize L, S randomly.
2: for i = 1 to N do
3: Xpos

i ← Compute centroid by Equation (11);
4: XS

i = Xpos
i +XS

i , Absolute Position Embedding;
5: Compute (f I

i , f
S
i ) by Equation (1);

6: Optimize L,S by Equation (5);
7: end for

Testing process:
Require: A layout clip image XI , L and S, as returned by

training process.
Ensure: the prediction result Y .

1: Assuming Ŷ = HS, compute the XS
hs by Alogorithm 1;

2: Assuming Ŷ = NHS, compute the XS
nhs by Alo-

gorithm 1;
3: f I = Proj(I(XI));
4: fS

hs, f
S
nhs = Proj(S({XS

hs,X
S
nhs}));

5: scorehs, scorenhs = Softmax(sim(f I , (fS
hs, f

S
nhs)));

6: Y ← scorehs, scorenhs;
7: return Y .

D. Absolute position embedding

The polygon-based topology is commonly associated with
the definition of hotspots in design rules. We embedded the
positions of the polygons into the learning process of the
sequence model by the proposed APE. For a given polygon
P k, the centroid coordinates (xk, yk) are computed by central
moments as follows:

xk =
Ck

10

Ck
00

,yk =
Ck

01

Ck
00

(10)

As shown in Fig. 4, we exclude the position encoder typically
employed in Transformer architectures, as the lack of contin-
uous contextual relationships between polygons. Instead, we
developed a straightforward multi-layer perceptron (MLP) to
encode the coordinates for integration into the sequence model,
yielding absolute position embedding Xpos

i as follows:

Xpos
i = {σ(FC([x̂k, ŷk]))}lk=1 (11)

Here, the coordinates need to be normalized as x̂k = xk

W
and ŷk = yk

H , W and H denotes the width and height of
the input layout clip image, l denotes the number of polygon.
Consistent with other approaches utilizing position embedding,
we adopt summation to fuse position information into the
sequence representation. Therefore, for the sequence model
S (·), the inputs are XS

i,input = Xpos
i +XS

i .
The entire training and evaluation process for CLI-HD,

which combines Layout2Seq and APE, is detailed in Alo-
gorithm 2.



TABLE I
STATISTICS OF THE DATASET

Benchmark Training Set Testing Set
#HS #NHS #HS #NHS

ICCAD2012 1204 17096 2524 13503
ICCAD2016 1300 9935 1301 2484

ICCAD2019-1 467 17758 1001 14621
ICCAD2019-2 467 17758 64310 65523

TABLE II
COMPARISON ON ICCAD-2012 BENCHMARK WITH THE

STATE-OF-THE-ART METHODS.

Method Accuracy(%) FA(%) Time(s)

DAC’2021 [6] 98.25 6.10 -
TODAES’2022 [14] 98.90 9.90 30.0

TCAD’2022 [10] 98.77 18.50 3.0
DATE’2022 [8] 98.42 12.80 3.2
DATE’2023 [5] 96.20 6.40 7.5

Ours 99.72 1.20 10

IV. EXPERIMENTAL RESULTS

Our experimental framework is implemented using PyTorch,
with all models trained on 8 NVIDIA GeForce RTX A6000
GPUs (48 GB memory) for accelerated computation. We eval-
uate our approach on the ICCAD2012 [15], ICCAD2016 [16],
and ICCAD2019 benchmarks [17]. Notably, our experiments
on the ICCAD2016 dataset incorporate random cropping of
image sizes, a novel augmentation technique that allows for
the presence of multiple hotspots within a single image.
This increases both the complexity and challenge of hotspot
detection, distinguishing our methodology from prior works.
Comprehensive dataset details are provided in TABLE I.

A. Comparison with State-of-the-Art Hotspot Detection Works
on ICCAD2012

To demonstrate the efficacy of our proposed approach, we
present the performance results on the ICCAD2012 dataset.
As shown in TABLE II, a comparison is made between
our method and the currently state-of-the-art techniques for

Fig. 5. Comparison with the state-of-the-art deep learning-based methods
on ICCAD2016. a) Bars with solid red borders indicate optimal results. †

denotes our results of supervised fine-tuning. #Miss denotes the number of
false negatives. b) Comparison of model detection speed and accuracy on
ICCAD2016.

TABLE III
RESULTS ON ICCAD2019-1 FOR OUR PROPOSED

Benchmark Accuracy(%) FA(%)

Benchmark1 76.60 29.66
Benchmark2 86.76 22.53
Benchmark3 88.63 19.45
Benchmark4 83.58 22.65
Benchmark5 93.00 20.43
Benchmark6 88.67 18.52
Benchmark7 85.75 21.36
Benchmark8 86.85 20.37
Benchmark9 93.40 9.71

hotspot detection. Our proposed method demonstrates supe-
rior accuracy compared to other state-of-the-art algorithms
(98.25% of DAC’2021 [6], 98.90% of TODAES’2022 [14],
98.77% of TCAD’2022 [10], 98.42% of DATE’2022 [8] and
96.20% of DATE’2023 [5] v.s. 99.72% of ours). Moreover,
the proposed method effectively addresses the problem of
excessive false positives encountered by existing approaches.
On the ICCAD2012 benchmark, our method reduces the
false alarm rate to 1.2%. The computational efficiency of
the proposed algorithm is a key consideration. Our method
achieves competitive performance while maintaining an ac-
ceptable trade-off between the accuracy and speed.

B. Comparison with State-of-the-Art Deep Learning-based
Classification Model on ICCAD2016

We evaluated four state-of-the-art backbone networks
(ResNet50 (R-50) [18], MobileNetV2 (M-V2) [19], ViT-16
[12], and Swin-Transformer Tiny (Swin-T) [20]) using su-
pervised learning on the ICCAD2016 datasets, and compared
their performance against our proposed method. As shown in
Fig. 5(a), our proposed method achieves an optimal accuracy
of 96.16% with reducing the number of missed detections to
only 50. Specifically, we evaluate the generalization of the
proposed method by fine-tuning the learned representations
under a supervised learning framework, denoted as Ours†. We
attained comparable accuracy to a 50-layer ResNet (88.24%
vs 88.16%) by fine-tuning contrastive learning representations
with a single-layer neural network. Furthermore, as illustrated
in Fig. 5(b), our fine-tuned model demonstrates significantly
improved inference speed, achieving nearly 200 FPS, outper-
forming all comparative methods.

C. Comparison with State-of-the-Art on ICCAD2019

We perform comparative experiments using the ICCAD2019
benchmark, which consists of two subsets, ICCAD2019-1
and ICCAD2019-2, both sharing a common training set. It
is considered a more accurate evaluation of the detector’s
capacity to detect never-before-seen hotspots. TABLE III
provides detailed results for the ICCAD2019-1 dataset. TA-
BLE IV reports the performance of our proposed method
and four state-of-the-art hotspot detection algorithms, as pre-
sented in TCAD’2020 [21], TODAES’2022 [14], DATE’2023



TABLE IV
COMPARISON ON ICCAD-2019 BENCHMARK WITH THE STATE-OF-THE-ART METHODS.

Benchmark TCAD’2020 [21] TODAES’2022 [14] DATE’2023 [5] GLSVLSI’2024 [22] Ours

ACC(%) FA(%) ACC(%) FA(%) ACC(%) FA(%) ACC(%) FA(%) ACC(%) FA(%)

ICCAD2019-1 80.90 2.50 87.20 9.70 91.60 8.60 62.30 3.70 96.10 1.00

ICCAD2019-2 89.80 83.90 90.30 84.10 90.50 83.90 84.30 64.20 87.02 20.53

Average 85.30 43.20 88.75 46.90 91.05 46.25 73.30 33.95 91.56 10.77

[5], and GLSVLSI’2024 [22]. Firt, our proposed frame-
work achieves an average accuracy of 91.56%, outperforming
TCAD’2020 [21], TODAES’2022 [14], DATE’2023 [5], and
GLSVLSI’2024 [22], which report accuracies of 85.30%,
88.75%, 91.05% and 73.30%, respectively. Furthermore, the
results indicate that the existing methods exhibit a signifi-
cant false positive rate on the ICCAD2019-2 dataset. Our
framework demonstrates a substantial advantage in effectively
suppressing false alarms, achieving a rate of 20.53% on
ICCAD2019-2 and an average of 10.77%.

V. CONCLUSION

In this work, we propose CLI-HD, a novel hotspot detection
method that leverages the topological representation of layout
patterns and a contrastive learning framework. We develop a
contrastive learning framework that aligns feature representa-
tions across binary images and sequence representations. The
Layout2Seq is proposed to integrates geometric information
of polygons in the process of pattern representation. We
introduce absolute position information to learn the topological
structure. Our results show that CLI-HD surpasses previous
methods, achieving a 0.82%-4.77% gain in accuracy while
reducing false alarm rates by 4.9%-23.18%. Future work will
explore the application of topological and contrastive learning
techniques across diverse downstream tasks beyond hotspot
detection.
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