JOURNAL OF THE ELECTRON DEVICES SOCIETY

Improved Algorithm of Dueling DQN
for BSIM Parameter Extraction Task

Wenjun Chen, Yali Zhang, Zikang Zeng, Silin Chen, Kangjian Di, Guohao Wang, Chia-Yen Li, and Ningmu Zou

Abstract—Traditional Berkeley Short-channel IGFET Model
(BSIM) parameter extraction methods are inefficient, time-
consuming, and heavily dependent on the experience of spe-
cialists. To tackle these issues, this paper proposes a BSIM
parameter extraction algorithm based on deep reinforcement
learning, combining the Dueling Deep Q-Network (Dueling DQN)
architecture with Prioritized Experience Replay (PER). The
algorithm also enhances the traditional c-greedy strategy by
implementing optimal step exploration, significantly improving
exploration efficiency. We achieve an average error of below
2.5%. Moreover, we have automated the parameter extraction
process, offering a promising alternative to existing methods.
This advancement aims to streamline and enhance the efficiency
of BSIM parameter extraction in semiconductor modeling. Code
is available at https://github.com/zouningmu/Dueling_ DQN_for_
BSIM.

Index Terms—BSIM, parameter extraction, Dueling-DQN,
deep reinforcement learning, compact model

I. INTRODUCTION

Circuit simulation is a key part of the integrated circuit
design process, which provides an accurate description of
circuit behavior through compact models. With the continuous
evolution of IC processes, the complexity of circuit simulation
has increased exponentially, and the accuracy of compact
models has become more demanding. Various specialized
compact models have been developed for different device
types, such as the BSIM-CMG model for FinFET devices
and the BSIM4 model for conventional MOSFETs. However,
such models often contain hundreds of physical parameters,
the accuracy of which not only directly affects the predictive
ability of the model but also determines the credibility of the
overall circuit simulation. Therefore, achieving high-precision
parameter extraction under the premise of ensuring efficiency
has become a core technical challenge to overcome in semi-
conductor modeling.

Even though software like IC-CAP [4] and Meqlab [5] can
optimize the modeling process to a certain extent, manual

Corresponding author: Ningmu Zou.

Wenjun Chen, Yali Zhang, Zikang Zeng, Silin Chen, and
Kangjian Di are with the School of Integrated Circuits, Nanjing
University. ~ Suzhou, China. (e-mails:wenjunchen @smail.nju.edu.cn,

yl_zhang @smail.nju.edu.cn,zikangzeng @smail.nju.edu.cn,
silin.chen@smail.nju.edu.cn, kangjiandi @smail k.edu.cn).

Guohao Wang is with ZetaTech Co., Ltd., Shanghai, China. (e-mail:
guohao.wang @zetatech.com.cn).

Chia-Yen Li is with Nexchip
ayenli@nexchip.com.c).

Ningmu Zou is with both the School of Integrated Circuits, Nanjing
University, Suzhou, China, and the Interdisciplinary Research Center for
Future Intelligent Chips (Chip-X), Nanjing University, Suzhou, China. (e-
mail: nzou@nju.edu.cn).

This work was partly supported by the Natural Science Foundation of China
under Grant 62341408.

Inc., Hefei, China. (e-mail: chi-

intervention is still required. It also relies heavily on the
experience of engineers, which makes the parameter tuning
process full of subjectivity. To enhance the efficiency and
reliability of parameter extraction, researchers are exploring al-
ternative methods to replace manual extraction processes, such
as Genetic Algorithms (GA) [6]], the Levenberg-Marquardt
Algorithm [[7], and Automatic Differentiation (AD) [8] have
been proposed. However, these algorithms can easily fall into
a dimensionality catastrophe and local optimal solutions with
high computational complexity. Deep learning networks have
been used for the extraction process in fixed gate-length struc-
tures [9], [[10], which has inspired further research to develop
optimized deep learning networks aimed at achieving global
parameter extraction [11]]-[14]. Leveraging a framework that
combines physics-driven parameter initialization with data-
driven deep learning has automated the parameter extraction
process [[15]]. Lee et al. demonstrated the efficacy of integrat-
ing multiple structural parameters into real-time BSIM-CMG
parameter extraction using multi-task learning, significantly
improving model robustness across various technology nodes
[16]]. However, the black-box nature of neural networks masks
the causal relationship between model parameters and device
characteristics, and the process is unobservable; the accuracy
of the model is closely related to the size and quality of the
training dataset, and a large amount of accurately annotated
measurements are required to achieve acceptable generaliza-
tion across different technology nodes.

Deep Reinforcement Learning (DRL) methods utilize BSIM
models to build environments that can effectively address the
drawbacks of deep learning. Related studies use modular Q-
learning for parameter extraction, which is divided into six
groups according to the different effects of the nine parameters
on the feature curves, which are extracted by agents [17]], but
only a limited number of parameters can be extracted at a
time. By comparing the three algorithms, it is found that Soft
Actor-Critic (SAC) is more efficient [[18], but the accuracy is
not satisfactory in the results.

This paper presents a parameter extraction method for the
BSIM based on Dueling Deep Q-Network (Dueling DQN)
[19]. By integrating the exploration and exploitation mech-
anisms of deep reinforcement learning, we can automate the
parameter extraction process. For the first time, we utilize the
deep reinforcement learning method on silicon data to achieve
high-precision extraction results and migrate to different tech-
nology nodes to get rid of the dependence on labeled data
through the interaction between the Agent and the HSPICE
environment, and to provide the decision path tracing for
parameter tuning to enhance the engineering utility.

https://github.com/zouningmu/Dueling_DQN_for_BSIM.
https://github.com/zouningmu/Dueling_DQN_for_BSIM.

JOURNAL OF THE ELECTRON DEVICES SOCIETY

TABLE I
WAT DATA AT DIFFERENT PROCESS NODES WITH DIFFERENT GATE
LENGTHS AND WIDTHS

150nm Data(shrink ratio=0.85)

L(um)
M 10 2 1 08 05 03 02 0.8
10 v Vv v v v v vV
1 N A N N
0.5 N N O
0.24 N N
110nm Data
L(um)
M 10 1 02 013 012 011

10 v v v v v

1 v v v v -

0.6 N

0.26 o= - - .y

0.16 o v v v v

40nm Data(shrink ratio=0.9)

L(um)
M 10 004

10 v v
0.3 - v
0.12 v v

II. PROPOSED METHODOLOGY
A. WAT DATASETS

To validate our proposed algorithm, we utilized Wafer
Acceptance Test (WAT) data obtained from a semiconductor
foundry. WAT is a critical step in semiconductor manufac-
turing, where electrical tests are performed on test struc-
tures located in the scribe lines of each wafer. These tests
measure key electrical parameters to ensure the wafer meets
the required specifications before proceeding to packaging.
In this study, we used WAT data from the 150nm, 110nm,
and 40nm technology nodes. These nodes are not all standard
technology nodes, but rather customized versions tailored to
the specific requirements of the manufacturing process. Table
summarizes the range of device sizes covered by the WAT
data, including variations in gate width (W) and gate length
(L). Here, shrinkage refers to the proportional scaling of
transistor dimensions. In EDA tools, the area is typically
labeled as the pre-shrink area, corresponding to the original
design dimensions before scaling.

B. ENVIRONMENT SETUP FOR DRL

Due to the large number of parameters to be extracted,
we adopted a parameter grouping method, assigning each set
of parameters corresponding to different curve groups to an
independent agent. Since each parameter operates within its
specific range and characteristics, it is essential to use distinct
parameters to fit different types of curves, such as current-
voltage (I-V) and capacitance-voltage (C-V) curves. Each
agent is responsible for iteratively predicting and optimizing
the values of multiple related parameters until the discrepancy
between the simulation results and actual silicon data con-
verges to an acceptable level. To improve the efficiency and

reduce the parameter coupling effect, we group the parameters
according to their sensitivity to the characteristics of C-V,
I-V, etc. based on the physical characteristics, and the total
reward of the agent is the weighted sum of the errors of each
characteristic, forcing the agent to balance the optimization of
different characteristics.

We formulate the BSIM parameter extraction task as a
Markov Decision Process (MDP), which is a mathematical
framework for modeling decision-making in situations. In this
framework, an agent interacts with an environment over a
sequence of discrete time steps. At each time step, the agent
observes the current state s;, takes an action a;, receives a
reward 7y, and transitions to a new state s;;;. The agent’s
goal is to learn a policy that maximizes the cumulative reward
over time.

Each parameter to be extracted has two discrete actions:
increase and decrease. The step size for parameter changes is
set to be 1 divided by the specified step length of the variation
range. The parameter ranges refer to the accumulated experi-
ence of the foundry and conform to the physical meaning.

The state is represented as a vector containing information
about the current parameter values, for example, [DTOX,
ACDE, PHIN, K1, MOIN, VOFFCYV, NOFF, NGATE], which
can be used to fit capacitance characteristic curves.

Changes in fitting errors determine the reward function.
Specifically, if an action effectively reduces the fitting error
with the target curve, it receives a positive reward. Conversely,
a negative reward is given if the error increases. For ease of
differentiation, we denote the WAT data as the target curve
and the simulated curve as the extracted curve. For a given
target curve Tar; and extracted curve Ext;, the fitting error is
measured using the relative root mean square error (RRMSE),
and the reward value can be determined as follows:

n

1
RRMSE =, |—> (

i=1

Tar; — Ext; 2
1 3 l
Exti) ’ ()

1 1

reward = (— ., @
newstate_rrmse oldstate_rrmse

where newstate_rrmse represents the new RRMSE after taking
the action, and oldstate_rrmse is the RRMSE obtained after
executing the previous action. The interaction between the
agent and the environment is implemented via HSPICE simu-
lation, with all BSIM parameters recorded in the model card.
Simulation results are modified by altering the values in the
model card to change the simulation outcomes. By comparing
the simulation results with actual silicon data each time,
we can quantitatively assess the degree of curve fitting. The
applied voltage and other relevant information are specified in
the netlist file, and the netlist and model card serve as input
files for the HSPICE simulation.

C. TRAINING ALGORITHM OF DUELING DQON

Based on the above MDP environment framework, we
further designed an efficient deep reinforcement learning algo-
rithm to automatically optimize BSIM parameters. Q-learning
[22] is a model-free algorithm that seeks to learn the value of

JOURNAL OF THE ELECTRON DEVICES SOCIETY

Q Target Network

Update network
parameters

Priority Experience Replay Buffer

Update the priorityl
nd weight

Q Training Network

Duleing DQN module

< Simulation environment module

-—->

EH

Loss
Function

| |
| |
| |
| |
| |
| Implementing Not :
|

| |
| |
| |
| |
|

the optimal implementing the
strategy optimal strategy
&, - greedy &, - greedy :

Fig. 1. Framework Overview. Our algorithm integrates Dueling DQN to learn and adjust the parameters of the strategy. For sample storage and utilization,
we selected priority experience replay, prioritizing experiences with greater impact to optimize the fitting process. The environment was built using HSPICE
for interaction with the Dueling module. For action selection, we used past experiences to optimize the traditional greedy strategy.

an action in a particular state. The Q-value Q(s¢, a;) represents
the expected cumulative reward of taking action a; in state s;
and following the optimal policy thereafter. The goal of Q-
learning is to approximate the optimal Q-function Q*(s;, at),
which satisfies the Bellman Optimality Equation:

Q" (s¢,a¢) =E Tt+ngiXQ*(3t+17at+1) | se,ae|, (3)
t+1

where Q*(s;,a;) is the optimal action-value function, rep-
resenting the maximum expected cumulative reward of taking
action a; in the state s, and thereafter following the optimal
policy. v is the discount factor(0 < ~ < 1), which balances
the importance of immediate rewards versus future rewards.
As shown in Equation [3] a value of ~ close to 0 emphasizes
short-term rewards, while a value close to 1 encourages long-
term planning.

While Q-learning is effective for problems with small state
and action spaces, it struggles to scale to high-dimensional
problems due to the curse of dimensionality. To improve the
efficiency and accuracy of parameter tuning, we employ a
Dueling DQN architecture as shown in Fig. [I] The input is
the s; and the output is Q(s¢,a:), essentially replacing the
Bellman equation with a neural network. The target network
(' is a lagged copy of the primary network, and its parameters
0’ are periodically updated from the primary network 6. It also
mitigates Q-value overestimation, improving learning accuracy
in high-dimensional parameter extraction tasks. Dueling DQN
enhances convergence speed and stability by splitting the Q-
network into two components: one for estimating state values
and another for evaluating action advantages. This design
allows the algorithm to identify important states better and
reduce reliance on ineffective actions.

Samples generated from each interaction between the agent
and the environment are collected into an experience pool and
sampled with equal probability for training. To address this,
we introduce prioritized experience replay (PER) to optimize
training efficiency. PER is implemented using a binary tree
structure for priority sorting. Each leaf node stores the priority
of the sample, each parent node maintains the sum of its
child nodes’ priorities, and the root node records the total
priority of all samples. During sampling, the algorithm starts
from the root node, selects a path based on node priorities,
and ultimately selects samples from leaf nodes. Each sample
records transition information (s, a¢,7¢,:+1) and is stored
in PER. The priority of each sample is associated with the
absolute value of its TD error ¢;, ensuring that more important
samples are prioritized during training. J, reflects the deviation
between the estimated value and the true value for a given
state-action pair. The larger the error, the more significant the
impact of that experience on model optimization. Therefore, in
PER, 4, is used as a priority indicator for samples, with higher-
priority experiences being used more frequently in training
to enhance learning efficiency. The relationship between each
sample’s priority and its J; is expressed by the following
equation:

O =1+ I[Eii(Q,(St-&-la agy1) — Q(s¢,ar),)
Pit)= 2 (6)

B ka%’

where p; denotes the priority of the t-th experience sample
in the replay buffer and alpha controls the degree of prior-
itization. The higher the priority, the higher the probability
that the sample will be used for training. Naturally, the

JOURNAL OF THE ELECTRON DEVICES SOCIETY

probability of each sample being adopted can be obtained,
P, is the probability of prioritizing an empirical sample by
normalizing it to determine the likelihood that that sample
will be drawn at training time as shown in Equation [6] To
prevent excessive bias towards specific samples, we implement
importance sampling weights to balance the training bias.
These weights are calculated based on the total number of
samples, N;, and a parameter (3 that ranges from O to 1, which
controls the strength of the importance sampling correction.

1 1

- . 7>/3
N; Pi

))

_ {Randomly select an action, with probability e

arg max, Q(s¢, a), with probability 1 — ¢
®)
In Equation |8} it is illustrated that during each interaction
between the agent and the environment, the agent selects an
action based on the current state using the e-greedy strategy.
When the agent needs to decide the current state sy, it queries
the Q-network to obtain the Q-values of all possible actions a.
The agent chooses an action randomly with probability € and
the action with the largest Q value with probability 1-¢. In the
early training phases, a higher value of € ensures that the agent
thoroughly explores the state space, helping to prevent it from
getting trapped in a local optimum. As training progresses, a
gradually smaller value of ¢ allows the agent to concentrate
more on the optimal strategy. In this method, the value of ¢
decreases as the number of executions increases. The rate at
which ¢ is reduced is defined as follows:

g = (Einitial - Efinal)/n» (9)

where n denotes the number of iterations required to reach
the predetermined value. The agent executes the action and
obtains a new state and reward. A random mini-batch of
samples is drawn from the experience replay buffer to train
the network. The target Q-values and losses are computed
to update the training network parameters for dueling DQN.
The algorithm records the current state, executed operations,
rewards, next state, and RRMSE in each training iteration.
As the intelligence continues to interact with the environment,
more and more training data are obtained, and the network
iterates towards obtaining an accurate estimate of the value of
the action. The training process terminates when the extraction
error for the BSIM parameters reaches a predetermined con-
vergence criterion. The method for computing the loss function
for the network is:

Loss = %Z (6,)%, (10)
t

There are two termination conditions for every training
epoch: one is reaching the specified maximum training steps,
and the other is when the extraction error falls below a
set threshold. Training will conclude when either condition
is satisfied. In the final state, since there is no subsequent
state, the Q-value directly equals the immediate reward 7.
The final Q-value combines the global value of the state with

the corresponding action’s advantage, yielding the optimal
action choice for the current state. This Q-value guides the
agent’s subsequent action selections, ensuring convergence to
the optimal tuning scheme.

Algorithm 1 Dueling DQN with PER and optimal step
exploration

1: Initialize training network Q and target network @’

2: Initialize PER and set total training episodes M

3: Initialize optimal tuning steps list L

4: for episode i € [1, M] do

5. Randomly choose between normal initialization or ex-
ecuting optimal fitting steps L. with probability p
With probability € select a random action a

7 Execute action a; in the environment, obtaining next
state s;41, reward r;, and current epoch’s minimum
RRMSE as RRM S Ecpoch

: Store the obtained tuple (s¢, at, 7, St4+1) in PER

9: if enough R data then

10: Sample batch_size data points from PER

11: Calculate target using @ target network:

y=r+ymaxQr (sis1,a | 6)
12: Calculate Temporal Difference (TD) error:
5:y—Q(s,a|0)

13: Update priorities in PER based on TD error
14: Update target network parameters:
Q'+« Q
15: if RRMSE.poch < RRMSEpi, then
16: RRM S Epin < RRM S Eepoch
17: Update optimal tuning steps list L
18: end if
19: end if
20: end for

D. OPTIMIZING GREEDY STRATEGIES IN DUELING DON

Explore to smaller RRMSE

|
|
|
|
Action 0 | Action 2 | Action 3 | Action 3| Action 1 = Action 2

|
|
Record the optimal
tuning step

Action 0 | Action 2

Delete Mutual
Exclusion Action

Action 0 | Action 3

Action 3 | Action 3

final optimization
tuning steps L

Fig. 2. Flow chart of optimization steps.

JOURNAL OF THE ELECTRON DEVICES SOCIETY

For the BSIM parameter extraction task, finding a better so-
lution in the vast state space is crucial. However, the e-greedy
strategy used in Dueling DQN struggles to efficiently explore
the high-dimensional state space in BSIM parameter extraction
due to its random exploration mechanism. To address this, we
propose an optimal step exploration strategy that guides the
agent by leveraging historical tuning experiences, combining
heuristic search with dynamic path optimization.

The core idea of the optimization algorithm is to improve
subsequent tuning processes based on previously explored
tuning steps. During training, action sequences leading to
reduced RRMSE are dynamically recorded. If the current
RRMSE improves over the historical minimum, the corre-
sponding action sequence is stored in the action list L, while
outdated sequences are purged.

As shown in Fig[2] further elimination of mutually exclusive
action pairs is performed. The action list is assumed to be
numbered based on the number of parameters being extracted.
For n parameters, actions are encoded as integers [0, 2n — 1],
where even/odd indices represent +/— adjustments respec-
tively (e.g., Action 0: +Paraml, Action 1: -Paraml, Action
2: +Param2). The recorded action list is traversed, and for
each action processed, the following checks are performed. If
the current action is even, subsequent actions in the list are
checked to see if an odd action corresponding to the current
action exists. If such a subsequent action is found, both the
current action and this subsequent action are removed from the
list. If not found, the algorithm proceeds to the next action,
repeating the check. If the current action is odd, a similar
process is followed to find any corresponding exclusive even
actions and perform the necessary removal operations.

After processing the action list, each action’s impact is
further evaluated by calculating the difference between the
current RRMSE and the next RRMSE. The action list is
sorted in descending order based on the computed RRMSE
differences, ensuring that actions significantly improving the
RRMSE value are prioritized. Finally, only the top P best-
performing actions are retained, forming a new action list
for subsequent training. To prevent overtraining, the recorded
optimal steps are randomly shuffled before being stored in the
action list L. This shuffling process ensures that the model is
exposed to a diverse set of experiences, breaking the sequential
correlation between consecutive actions and states.

Overall, we integrate the Dueling DQN algorithm with
prioritized experience replay, improving it by replacing the
epsilon-greedy strategy with optimal step exploration (see
Algorithm [T).

III. RESULTS AND DISCUSSION
A. SIMULATION RESULTS AND DISCUSSION

The Dueling DQN-based reinforcement learning model is
employed to extract BSIM4 parameters for NMOS devices.
The primary objective is to minimize the RRMSE between
the simulated and measured I-V and C-V characteristics.
The training data are derived from WAT measurements. The
experiments are performed on devices using a 150nm tech-
nology node, with varying L while the W remains fixed at

10 pm. The initial parameters are randomly selected within
a predefined range. The results demonstrate the effectiveness
of the proposed DRL-based model across both I-V and C-V
characteristics. The extracted parameters are summarized in
Table[Ml} with the selection of the model and parameters being
based on long-term experience from the wafer fabrication
industry. All parameters were carefully chosen based on the
length expansion capabilities required by the I-V and C-V
models and can be found in the BSIM4.6.2 manual.

The Dueling DQN employs a single hidden layer with
128 nodes. The input layer receives the BSIM parameter
values, and the output layer provides Q-values for each action.
Key hyperparameters include a learning rate of 5 x 1073,
a discount factor v = 0.99, and a target network update
frequency of every 10 episodes. The replay buffer size is set
to 10,000 experiences, with a batch size of 128 for training.
The exploration rate € decays from an initial value of 0.8
to 0.01 over 2,000 actions. The total training consists of
2000 episodes, and training begins only when the replay
buffer contains at least 128 samples. For prioritized experience
replay, the priority exponent « is set to 0.6, and the importance
sampling exponent 3 is set to 0.4. These parameters control
the degree of prioritization and the bias correction strength,
respectively.

TABLE 11
A PART OF THE PARAMETERS WE USED

Region | Model Parameters
Cgg—Vys ACDE, DTOX, PHIN, K1, MOIN and NOFF
Cye—Vys CGSO, CGDO, CGSL, CGDL, DLC and DWC

14-Vys Linear
I4-Vys Saturation
Vi1in (threshold voltage)

VOFF, NFACTOR, CIT, MINV, U0, UA and UB
AGS, VSAT, Al, A2, ETAO, ETAB and DSUB
LPEO.DVTO,DVT1,VOFFL, LVTHO, and Ivoff

The results of C-V characteristics are illustrated in Fig. [3
showing the fitting accuracy of the extracted capacitance pa-
rameters. The RRMSE values for Cy, — Vg and Cy. — Vs are
summarized in Table The extracted 14—V, characteristics
are shown in Fig. 4] where the fitting results are presented
for both linear and logarithmic scales. Excellent agreement
is observed between the simulated and measured data, with
RRMSE values summarized in Table For long-channel
devices (L = 10 pm), the RRMSE stabilizes around 1.37%.
As the gate length decreases to L = 0.2 ym and 0.18 pm,
the RRMSE remains below 1.6%, accurately capturing short-
channel effects. This indicates that the DRL-based method can
effectively model the device behavior across a wide range of
gate lengths. To further validate the accuracy of the extracted
parameters, the first derivative of the I;-V,, characteristics
concerning Vs is evaluated, as shown in Fig. E} It should
be noted that, due to the measurement limit, the part of the
current that is too small has been smoothed.The first derivative
highlights the transitions between different operational regions,
emphasizing changes in I, concerning V.

The DRL-based model achieves excellent fitting accuracy,
with RRMSE values below 2% across all tested gate lengths.
For instance, the RRMSE for Cy,—Vs at L = 10 pum is as low
as 0.937%, while for shorter gate lengths (L = 0.18 um), the

JOURNAL OF THE ELECTRON DEVICES SOCIETY

g(?) W=10um L=10pum Line: Reference curves g()b) W=10pum L=10pm (C) W=10um L=1pum (d W=10um L=0.18um
SYmbOTE Targit curves 1g [Line: Reference curves Line: Reference curves 000000000 14 F[Line: Reference curves.
1 [/Symbol: Target curves 201 Symbol: Target curves 13 |- Symbol: Target curves
L 12F
~ 15}

g gut
& Sof
O 10t Lc)o o
sl
st e

EEOEEEEEEERRDREO 6

0 5

0 1
Gate Voltage(V)

1 0 1
Gate Voltage(V)

2 -1 1 2 2

0 1 0 |
Gate Voltage(V) Gate Voltage(V)

Fig. 3. Fitting results of the C-V characteristic curve for different gate lengths. All curves correspond to a gate length of 10 um. (a) Cgg — Vs for gate
length 10 pm, (b) Cyc — Vs for gate length 10 um (with width 10 pm), (c) Cge — Vys for gate length 1 pm, (d) Cyec — Vs for gate length 0.18 pm.

a W=10um L=10um b W=10pm L=2pm
ogn) a a 0.00025 (b) n n 0.0012
0,001 {|Line: ~Extracted curves 0,001 { Line: Extracted curves)
|E-4Symbol: Targetcurves| ___oaeeeeee . -4 Symbol: Target curves| o8 %! 10,0010
_IE-5{=Vd=0.1V PO _IES{——Vd-0IV ¢)
5 1E-6 o =18V ZIE6 e =1 .8V 0.0008
EIE7 000015 E 1E7
£ B8 2 IES 0.0006
=R ..
G B9 oooot0 G 1B
EIE0 ZIE-10 0.0004
IE-11 “FIE-11 {%
g §
QIE-12 0.00005 AIE-12 "l 00002
1E-13 1E-13 0 o
1E-14 1E-144,
1E-15+ 0:00000 1E-15+ 0.0000
05 00 05 0 15 20 05 00 05 015 20
Gate Voltage(V) Gate Voltage(V)
(© W=10um L=0.18ym s D W=024um =018
Line: Reference curves : = TE=491ine: Reference curves ” '
0.001 Line: . 0.00014
B4 Symbol: Target curves 4 1E-5 JSymbol: Target curves i
0.004
) Va=0.1V] 0.00012
:;z 1E-6 o s
< g7 0003 LI1E-T 0.00010
N <
§ :Ei , éu}g 0.00008
S 1E-10 0002 B 0.00006
o] / o]
EIE11 P 7 0001 EEI0 0.00004
SIE-12 S 5
QIE13 a 0.00002
1E-141 0000 1E-12 0.00000
1E-15 1E-13 : :
-05 0.0 0.5 10 15 20 -05 00 05 1.0 1.5 20
Gate Voltage(V) Gate Voltage(V)

c - - d W=10um L=0.8um
(©) W=10um L=1ym N C i u o004
0,001 {Line: Extracted curves 0,001 Line: ~ Extracted curves 080
1.4 | Symbol: Target curves > |E-4] Symbol: Target curves |
1E-5{==Vd=0.1V 0.003 - Vd=0.1v 0.003
2 IE6{—— VeIV . Vd=18V| §
= IE7 - 7
5 1k 0.002
5 IE9
%:)II{-IO o0l
S1E11 0/
A 1E-12
:E:Z 0.000
1E-15
05 00 05 10 15 20 00 05 0 15 20
Gate Voltage(V) Gate Voltage(V)
(®) W=0.24pm L=10um (h) W=10um L=10m
B 0.000006 200
Line: Reference curves, Line: Extracted curves|
1E-5{ Symbol: Target curves 0.000005 180 {Symbol: Target curves
1E—6 |/ Vd-0.1V 160 es-06V
2 ——Vd=18V = ~
T $+0.000004 2140
E 3
ERT ’ 120
£ 0.000003 g
5 5100
3 1E-9 £
E1E-10 0.000002 o
g £ 60
AlE-11 0000001 Ew
1E-12 - 2
3 0.000000
1E-13
-0.5 0.0 0.5 1.0 1.5 20 0.0 05 1.0 1.5 2.0
Gate Voltage(V) Drain Voltage(V)

Fig. 4. DRL-based parameter extraction fitting results for Iy — Vs and Iy — V{3, characteristics. (a)-(g) show I — Vg curves (linear and log scales) with
varying gate width and varying gate lengths: (a) W/L = 10um/10pum, (b) W/L = 10pum/2um, (c) W/L = 10pum/1pm, (d) W/L = 10pm/0.8um, (e) W/L =
10pm/0.5pum, (f) W/L = 0.24pum/0.18um, (g) W/L = 0.24pum/10pm. (h) shows I; — Vs characteristics

RRMSE for Cy. — Vy, remains within 0.832%, demonstrating
the model’s robustness in capturing capacitance behavior under
short-channel effects.

The findings indicate that the Dueling DQN-based param-
eter extraction method not only rapidly fits the I-V and C-V
curves but also achieves superior fitting accuracy compared
to traditional methods. The method also enables the use of
arbitrary [I4-V,, data points for fitting, without strict bias
conditions. The proposed method enhances accuracy and gen-
eralization for 150 nm NMOS devices by leveraging WAT
measurements. Moreover, the algorithm demonstrates excel-
lent exploration efficiency in large state spaces, significantly
reducing the extraction time.

B. ALGORITHM EXTENSION TO 110nm AND 40nm TECH-
NOLOGY NODES

To further validate the robustness and generalization capa-
bility of the proposed algorithm, we extended its application
to the 110nm and 40nm technology nodes. Unlike the ex-
periments conducted for the 150nm node, where the W was
fixed at 10 um and the L was varied, the devices for 110nm
and 40nm nodes utilized smaller dimensions. Specifically,

TABLE III
TRAINING RESULTS

Characteristic RRMSE RRMSE Num.
curves after training before training of episodes
Cyg—Vys 0.94% 29.57% 2000
Cyc—Vys 0.83% 40.56% 2000
14-Vys 1.31% 79.34% 2000
gm—Vys 1.61% 18.6% 2000
14—Vys at log scale 0.10% 2.26% 2000

for the 110nm node, the gate width and length were set to
W =0.16 ym and L = 0.11 pm, respectively. For the 40nm
node, the dimensions were W = 0.12 ym and L = 0.04 pm.

Similar to the 150nm experiments, the primary focus was
on evaluating the fitting accuracy of the 14—V, characteristics,
including both the logarithmic scale and the first derivative of
the curve concerning V. Training data were derived from
WAT measurements to ensure comprehensive coverage of
device characteristics.

The extracted 13—V, characteristics for the 110nm node
demonstrated excellent agreement between the simulated and

JOURNAL OF THE ELECTRON DEVICES SOCIETY

(a) W=10um L=10pm (b) W=10um L=2um (c) W=10um L=1um (d) W=10m L=0.8um
30 30 - 300 2000 — 2500
Line: Reference curves Line: Reference curves 1200 Line: Reference curves I:Im: Reference curves
Symbol: Target curves | _ 200 Symbol: Target curves Symbol: Target curves e 300 {Symbol: :'lurgcl curves 200
—Vd=0.1V j—Vd=0.1V e/ (=), 1V 1500 eV d=0.1V
20 o eV d=1.8V/ 2004=Vd=1.8V £800 2001 =18V [V d=1.8V 1500
— ~ _ 2 200
el £ 9 £ 1000 %
:E 10 o :E w00 F :% 1000
1 100 o100 100
500
500
f 0 S RRRRERRRRRRRES Lo)
R st 0 0 Lo 0 0
05 00 05 10 15 20 05 00 05 10 15 20 o5 00 05 10 15 20 05 00 05 10 1s 20
Gate Voltage(V) Gate Voltage(V) Gate Voltage(V) Gate Voltage(V)
Fig. 5. DRL-based parameter extraction fitting results for the first derivative of I4—Vs characteristic curves.
measured data. The RRMSE for the logarithmic-scale fitting @ W=0.16m L=0.11um P E(l:) W=0.123m L=0.04um
stabilized at 1.71%, while the RRMSE for the first derivative Line: Reference curves 1p.s Line: Referececues
. =23 Symbol: Target curves
fitting remained below 1.75%. This indicates that the algorithm 5 DIE6] Vo
. . . . = Vbs=-0.275V
effectively captures both linear and nonlinear behaviors, as s SIET b5y
. . . . Vbs=-1.5V §1E 3 Vbs=-0.825V s
well as transitions between different operational regions for 265 Vos= 011V | 558

the 110nm node.

For the 40nm node, despite the more pronounced short-
channel effects, the algorithm successfully fitted the I;—V,
characteristics with a final RRMSE of 2.08% for the
logarithmic-scale fitting. For the first derivative fitting, the
RRMSE stabilized at 2.12%, demonstrating the algorithm’s
ability to accurately capture the subtle changes in device
behavior under aggressive scaling. The fitting results for the
logarithmic scale and first derivative of the I;-V,, curves at
110nm and 40nm nodes are summarized in Table [[V] Figure [6]
presents the logarithmic scale and first derivative fitting results
for both nodes.

TABLE IV
FITTING ACCURACY FOR DIFFERENT TECHNOLOGY NODES

RRMSE for Log Scale | RRMSE for First

Technology Node

14-Vys (%) Derivative (%)
150nm 0.10% 1.61%
110nm 1.71% 1.75%
40nm 2.08% 2.12%

The extension of the algorithm to 110nm and 40nm nodes
further validates its effectiveness and adaptability. The results
indicate that the proposed method can maintain high fitting
accuracy for both I-V and derivative characteristics, even
under aggressive scaling conditions. This demonstrates the
algorithm’s potential for widespread application across a range
of semiconductor technologies, enabling efficient and accurate
BSIM parameter extraction for advanced technology nodes. In
addition, Fig[7] shows the 13-stage ring oscillator, simulated
using Hspice, at the end of the algorithm run after extracting
the 110-nm device parameters.

The fitting performance across the 150nm, 110nm, and
40nm nodes demonstrates the scalability and robustness of
the proposed algorithm. By maintaining RRMSE values below
2.5% for both logarithmic and derivative fittings across all
nodes, the algorithm is a reliable and scalable solution for
BSIM parameter extraction in modern semiconductor tech-
nologies.

0E+0

0.5 0.0 0.5 1.0

Gate Voltage(V)
W=0.16pum L=0.11ym

Line: Reference curves
Symbol: Target curves

L5 10

0.0 05
Gate Voltage(V)
W=0.12um L=0.04pm

Line: Reference curves|

Symbol: Target curves
Vbs=0V
Vbs=-0.275V|
Vbs=-0.55V
Vbs=-0.825V
Vbs=-0.11V

,e%?g’,}?

=)

0 -freceoonmermmrccconn

PCO0DEnEOooEOoEO

05 10
Gate Voltage(V)

0.0 1.5 0.0 0.5

Gate Voltage(V)

1.0

Fig. 6. Logarithmic-scale and first derivative fitting results for I;—Vys
characteristics at 110nm and 40nm CMOS nodes. (a) Logarithmic-scale fitting
for 110nm (W = 0.16 pm, L = 0.11 pm). (b) Logarithmic-scale fitting for
40nm (W = 0.12 pm, L = 0.04 pm). (c) First derivative fitting for 110nm
node. (d) First derivative fitting for 40nm node.

1.5+
13-stage ring oscillator

AT

. H

-

—_
(=]
L

Voltage(V)
o

o‘o-ﬁqu_l_‘

0.00E+00 5.00E-09 1.00E-08 1.50E—08 2.00E—08
Time(s)

Fig. 7. 13-stage ring oscillator simulations.

C. Ablation Study

To demonstrate the effectiveness of our improvements, we
conducted comparative experiments on the algorithm. We
trained the model with 10 random seeds and recorded the aver-
age episodic rewards. To ensure fairness in the comparison, all

JOURNAL OF THE ELECTRON DEVICES SOCIETY

Smoothed Reward with Standard Deviation Shaded

287.0
266.2
2454
224.6
203.8
183.0
162.2
141.4
120.6
99.8
79.0
582
374
16.6
4.2

Smoothed Reward

Baseline
Dueling DQN with PER
—— Dueling DQN with PER and optimal step exploration

Dueling DQN with optimal step exploration

0 100 200 300 400 500 600 700 800 900
Episodes

1000 1100

Fig. 8. Ablation Study: Smoothed Reward and Convergence of Different
Strategies. The smoothed reward reflects the overall performance trend of
each strategy and the shading indicates the standard deviation.

40 -
DDPG[14]
SAC[14] @

30+
<
X
SN
% 20 Dueling DQN Double DQN

® [}

=
o~ DQN

10

Ours

0 1 1 1 1 1 1
500 600 700 800 900 1000 1100 1200
Time cost(s)

Fig. 9. The comparison of DQN and other reinforcement algorithms.Compare
the time required to find the minimum RRMSE.

experiments used the e value starting at 0.8, which decayed to
0.01 over 200 training steps and remained constant thereafter.
The total training period consisted of 1200 episodes, with the
exploration strategy parameter ¢ set to 0.5. The results show
that the improved algorithm helps the agent during training and
aids in finding the optimal solution. In Fig. [§] the solid lines
represent the mean episodic rewards across the 10 runs, while
the shaded regions correspond to one standard deviation above
and below the mean, providing an indication of the variability
and stability of the training process under each strategy.

In this ablation study, we systematically enhanced the
Duelling DQN algorithm by introducing PER and optimal
step exploration (optimizing the next exploration based on
effective action sequences previously discovered). The results
show that adding PER alone (orange line) provides a modest
improvement in convergence speed and final reward compared
to the baseline (blue line), but the enhancement is relatively
limited. In contrast, optimal step exploration (red and green
lines) has a much more significant impact, greatly accelerating
convergence and achieving higher rewards. Notably, the red
curve, which only includes optimal step exploration, achieves
nearly the same performance as the green curve (combining
PER and optimal step exploration), indicating that optimal
step exploration plays a more crucial role in performance
improvement, while the contribution of PER is comparatively
minor. Both the red and green curves converge to the same
reward level.

We conducted a comparative analysis of DQN and its vari-
ous variants, with a primary focus on convergence speed and
average reward. The results of this comparison are presented in
Fig. O] It is important to note that the random seed influences
convergence speed. Therefore, we report the results based on
the majority of trials. For the average reward, we computed
the mean from the results obtained across 10 random seed
experiments. As observed, DQN suffers from the problem
of overestimating Q-values, an issue that both Dueling DQN
and Double DQN [21] aim to address. Based on Dueling
DQN, our algorithm finds better solutions more quickly and
improves convergence speed. The architectural design of Du-
eling DQN makes it particularly well-suited for handling high-
dimensional state spaces in parameter extraction. We also
referenced two continuous-action deep reinforcement learning
algorithms. However, due to the poor performance of [18§]]
when extracting more than one parameter, we replicated the
[18]] method and iterated multiple times. Overall, these meth-
ods have not shown promising results at this stage.

D. DRL METHODS vs DL METHODS

To illustrate the advantages of our proposed algorithm,
we perform a comparative analysis with existing research
results focusing on the RRMSE of the linear region fitted
by I4-Vys. as shown in Table 5, highlighting the robustness
of the deep reinforcement learning approach. In the table,
”Amount” represents the total number of extracted device
parameters, while "Model” indicates the Al architecture type -
either Single ANN (individually trained per device) or Global
ANN/DRL (generalized for multi-device scaling).

TABLE V
COMPARISON OF PARAMETER EXTRACTION METHODS FOR MOSFET
MODELING.,
Method | Amount | RRMSE (%) | Model

RFIT’2022 [10] 12 8 (max error) Single ANN
Solid-State Electron2023 [12] 16 7.41 Global ANN
TED’2022 [9] 12 6.1 Single ANN
TED’2023 [14] 21 34 Global ANN
IEEE Access’2024 [16] 15 4.26 Global ANN
Solid-State Electron’2024 [11]] 28 2.735 Global ANN
Solid-State Electron’2025 [13]] 28 1.5 Global ANN
TED’2024 [23] 16 - Global BO
Ours | 98 | 1.31 | Global DRL

Alongside the existing studies, we employed the ANN
method for parameter extraction within our dataset and com-
pared it with the proposed DRL method. Due to the limited
availability of WAT data from semiconductor foundries, we
creatively applied data enhancement techniques to thoroughly
validate our proposed algorithm. The device parameters,
specifically Width and Length, were uniformly sampled from
their minimum to maximum value ranges. These sampled
parameters were then used in HSPICE simulations to generate
large-scale synthetic datasets that remain physically consistent
with actual device characteristics.

For the ANN architecture, we utilized three hidden layers
with 128, 64, and 32 neurons, respectively. The activation

JOURNAL OF THE ELECTRON DEVICES SOCIETY

function for the hidden layer is ReLU, and the learning rate is
set to 1e-5. The input consists of data from the I;— Vs curve,
ranging from -0.5V to 1.98V in increments of 0.02V, while
the output corresponds to the extracted parameters:[VOFF,
NFACTOR, CIT, MINV, K2, U0, UA, UB, A0, AGS, VSAT,
Al, A2, ETAO, ETAB, DSUB]. All these parameters are used
in the DRL. The output parameter values represent those
extracted manually using Meqlab software, which was used as
the ground truth. To ensure robust validation, the dataset was
randomly split into training and testing sets in a 9:1 ratio, with
a fixed random seed of O for reproducibility. ANN achieved
the best performance on the test set with RRMSE of 2.28%,
which is still not as effective as the DRL performance.

We try to analyze the above results. In BSIM parameter
extraction, DL methods rely heavily on multilayer perceptual
machines that model the relationship between inputs and
outputs through nonlinear activation functions to minimize
prediction errors. However, DL methods are highly dependent
on data quality and require large-scale data generation to
ensure accuracy across process nodes.In addition, we also
compare an algorithm based on Bayesian optimization(BO)
[23]]. Our algorithm does not need complex objective function
and can extract more parameters.

In contrast, DRL does not directly predict the parameters
but instead trains an agent to optimize a strategy for adjusting
them. The ability to record, track, and visualize decision steps
or intermediate states during a model run allows engineers
to see which parameters were modified when and how the
error varied, all of which help engineers understand the tuning
process.DRL agents demonstrate significant benefits in BSIM
parameter extraction.DRL improves generalization to different
process nodes and equipment models by dynamically adjust-
ing the search strategy. In addition, DRL provides a clearer
understanding of parameter-output relationships, revealing the
impact of key parameters through policy-guided parameter
tuning, in contrast to the fuzzy relationships in deep learning
models.

IV. CONCLUSION

This paper presents a method for BSIM parameter extraction
based on Dueling DQN, designed to address the challenges
of high-dimensional optimization and precision in the BSIM4
model. The proposed approach effectively overcomes key
difficulties in parameter extraction, such as managing high-
dimensional state spaces, minimizing fitting errors, and effi-
ciently identifying optimal solutions. Furthermore, after the
model is trained, it can output results in just a few seconds,
offering a promising alternative for automating the BSIM
parameter extraction process. This reduces reliance on manual
intervention and significantly improves both accuracy and
efficiency. The final fitting results consistently achieve less
than a 2.5% error margin, meeting the acceptance standards
of semiconductor fabrication.

REFERENCES

[1] D. M, “The role of TCAD in compact modeling,” TechConnect Briefs,
vol. 1, no. 2002, pp. 719-721, Apr. 2002.

[2] BSIM-CMG 111.2.1 Technical mannul. Accessed on: Jun. 6, 2022.
[Online]. Available:https://www.bsim.berkeley.edu/models/bsimcmg/.

[3] BSIM4 4.8.2 Technical mannul. Accessed on: Jan. 1, 2020. [Online].
Available:https://www.bsim.berkeley.edu/models/bsim4/.

[4] Keysight Technologies. Keysight Technologies Official Website. Available:
https://www.keysight.com.cn/. [Accessed: Mar. 10, 2023].

[5] Primarius Technologies. MeQLab - Manufacturing EDA. Available: https:
/Iwww.primarius- tech.com/products/manufacturing_eda/MeQLab.html,
[Accessed: Mar. 10, 2023].

[6] Y. Li, “An automatic parameter extraction technique for advanced CMOS
device modeling using genetic algorithm,” Microelectron. Eng., vol. 84,
no. 2, pp. 260-272, Feb. 2007.

[7]1 W. Jouha, A. E. Oualkadi, P. Dherbecourt, E. Joubert, and M. Masmoudi,
“Silicon carbide power MOSFET model: An accurate parameter extrac-
tion method based on Levenberg-Marquardt algorithm,” IEEE Trans.
Power Electron., vol. 33, no. 11, pp. 9130-9133, Nov. 2018.

[8] M. Shintani, A. Ueda, and T. Sato, “Accelerating parameter extraction
of power MOSFET models using automatic differentiation,” IEEE Trans.
Power Electron., vol. 37, no. 3, pp. 29702982, Mar. 2022.

[9] M.-Y. Kao, F. Chavez, S. Khandelwal, and C. Hu, “Deep learning-
based BSIM-CMG parameter extraction for 10-nm Finfet,” IEEE Trans.
Electron Devices, vol. 69, no. 8, pp. 4765-4768, Aug. 2022.

[10] F. Chavez, M.-Y. Kao, C. Hu, and S. Khandelwal, “Optimization of
deep learning-based BSIM-CMG I-V parameter extraction in seconds,”
in 2022 IEEE International Symposium on Radio-Frequency Integration
Technology (RFIT), 2022, pp. 124-126.

[11] J.-H. Chen, F. Chavez, C.-T. Tung, S. Khandelwal, and C. Hu, “A single
neural network global I-V and C-V parameter extractor for BSIM-CMG
compact model,” Solid-State Electron., vol. 216, p. 108898, Jun. 2024.

[12] F. Chavez, C.-T. Tung, M.-Y. Kao, C. Hu, J.-H. Chen, and S. Khan-
delwal, “Deep learning-based I-V global parameter extraction for
BSIM-CMG,” Solid-State Electronics, vol. 209, p. 108766, 2023.
doi:10.1016/j.sse.2023.108766.

[13] G. Guo, Z. Tang, Z. Cui, C. Li, and H. You, “GatedNN: An accurate
deep learning-based parameter extraction for BSIM-CMG,” Solid-State
Electronics, vol. 224, p. 109044, 2025.

[14] A. Ashai, A. Jadhav, A. K. Behera, S. Roy, and B. Sarkar, “Deep
learning-based fast BSIM-CMG parameter extraction for general input
dataset,” IEEE Trans. Electron Devices, vol. 70, no. 7, 2023.

[15] A. Singhal, G. Pahwa, and H. Agarwal, “A novel physics aware ANN-
based framework for BSIM-CMG model parameter extraction,” IEEE
Trans. Electron Devices, vol. 71, no. 5, pp. 3307-3314, May 2024.

[16] S.Lee, S. Eom, J. Jeong, J. Lee, S. Lee, H. Yun, Y. Ahn, and R.-H. Baek,
“Multi-Task Learning for Real-Time BSIM-CMG Parameter Extraction of
NSFETs With Multiple Structural Variations,” IEEE Access, vol. 12, pp.
184619-184628, 2024. doi: 10.1109/ACCESS.2024.3512612.

[17] A. Dutta, D. Rajasekharan, and Y. S. Chauhan, “Compact model
parameter extraction using modular Q learning for nano-scale transistors,”
in 2020 5th IEEE International Conference on Emerging Electronics
(ICEE). New Delhi, India: IEEE, Nov. 2020, pp. 1-4.

[18] E. Papageorgiou, G. Alia, A. Buzo, G. Pelz, and T. Noulis, “MOSFET
model parameter extraction using reinforcement learning,” in 2024 Pan-
hellenic Conference on Electronics & Telecommunications (PACET).
Thessaloniki, Greece: IEEE, Mar. 2024, pp. 1-5.

[19] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning. PMLR, 2016, pp. 1995—
2003.

[20] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2016. [Online]. Available:https://arxiv.org/abs/1511.05952

[21] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-Learning,” in Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, Phoenix, Arizona, AAAI Press, 2016, pp.
2094-2100.

[22] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-Learning Algo-
rithms: A Comprehensive Classification and Applications,” IEEE Access,
vol. 7, pp. 133653-133667, 2019, doi: 10.1109/ACCESS.2019.2941229.

[23] O. Maheshwari, A. Singh, and N. R. Mohapatra, "Training-Free Param-
eter Extraction for Compact Device Models Using Sequential Bayesian
Optimization With Adaptive Sampling,” IEEE Trans. Electron Devices,
vol. 71, no. 12, pp. 7889-7895, Dec. 2024.

https://www.keysight.com.cn/
https://www.primarius-tech.com/products/manufacturing_eda/MeQLab.html
https://www.primarius-tech.com/products/manufacturing_eda/MeQLab.html
https://doi.org/10.1016/j.sse.2023.108766

	Introduction
	Proposed Methodology
	WAT DATASETS
	ENVIRONMENT SETUP FOR DRL
	TRAINING ALGORITHM OF DUELING DQN
	OPTIMIZING GREEDY STRATEGIES IN DUELING DQN

	Results and Discussion
	SIMULATION RESULTS AND DISCUSSION
	ALGORITHM EXTENSION TO 110nm AND 40nm TECHNOLOGY NODES
	Ablation Study
	DRL METHODS vs DL METHODS

	Conclusion
	References

