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Abstract—Distributed acoustic sensing (DAS) 
has been deployed across various large-scale 
infrastructures for safety monitoring and health 
maintenance operations. Among these 
applications, the localization and recognition of 
vibrations are common and critical post-
processing tasks. Currently, multi-event vibration 
localization and recognition present a significant 
challenge for post-processing algorithms. 
Moreover, weak vibrations, which are marked by 
short durations and limited propagation ranges, 
further exacerbate the difficulty of the accurate 
location and recognition. Consequently, these 
challenges contribute to a high false alarm rate 
and missed detection rate across the DAS 
system. To address those challenges, this paper 
proposes a location and recognition convolutional neural network (LR-Net) that can achieves end-to-end and multi-
event recognition and localization along the fiber within a single sample. In the model, we propose the location-
attention-mechanism feature fusion and squeeze framework (LAMFS) and dynamic matching strategy (DMS) to enable 
the model to focus on weak vibration and enhance its fitting ability. In the field experiments conducted in three typical 
scenarios, LR-Net achieves a 99.1% mAP for six types of events with merely average location error of ±1.5m. Moreover, 
the Nuisance Alarm Rate (NAR) and the Missing Alarm Rate (MAR) were only 1.4% and 1.06% respectively. These 
results demonstrate superior performance compared with other deep learning models. Above all, the proposed 
algorithm possesses significant practical value and can be adapted to other scenarios such as pipeline leak detection, 
perimeter security, and protection of important facilities. 

 
Index Terms—Distributed acoustic sensing, protection of important facilities, location and recognition of weak vibration 

 

 

I.  Introduction 

HE Distributed acoustic sensing (DAS) has been employed 

to construct the smart city by measuring the acoustic wave 

and vibration in Internet of Things (IOT)[1],[2]. 
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With the long sensing distance and continuous environment 

detection way, it can measure the vibration event along the fiber 

and reconstruct its amplitude and phase with high-fidelity 

vector information. Therefore, it has been widely applied in 

perimeter security and power system monitoring [3], [4],[5], oil 

and gas energy [6], [7] pipeline leak [8], and earthquake [9], 

which provides a large-scale, full-space, low-cost, high-

sensitivity acoustic/vibration dynamic sensing technical basis 

for fiber-optic IOT. 

In the application of DAS, the localization and recognition of 

vibration signals are two critical tasks that significantly relate 

its degree of intelligence. However, various invasive means and 

complex environmental noise lead to a high Nuisance Alarm 

Rate (NAR) in those tasks, which creates a bottleneck limiting 

its performance in field application. So far, many researchers 

have been exhaustively devoted to lower its NAR. Some 

researchers used 1-D [10], or 2-D convolutional neural 

networks (CNNs) [11-14], and group CNN [15] to classify 

types of vibration events for recognition. There are also other 

deep learning algorithms, such as the long short-term memory 
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network (LSTM) [16], and Generative Adversarial Network 

(GAN) [17], as well as some combined models [18], [11]. On 

the other hand, some studies with the aim of positioning or 

tracking vibration along optical fibers have been conducted. In 

those studies, the clustering algorithms have been employed to 

position the collision vibration [19], and intrusion activities [20]. 

However, the current works mainly concentrate on either the 

location task or recognition task. In actuality, it is an urgent 

need to achieve simultaneous identify event categories and 

predict the precise spatial range of events occurring along the 

fibers (recognition and location) within a single network, 

thereby enhancing the intelligence of DAS and mitigating the 

dilemma caused by the mismatch of location and recognition 

results from two algorithms.  

Recently, a two-level multitask learning (MTL) approach is 

proposed to achieve ground event recognition and localization 

in radial direction [2]. However, this classification algorithm 

could not distinguish multiple events within a single sample. 

The novel object detection algorithm Faster-RCNN, YOLO 

were adopted in some works to tell both the event type, 

vibration ranges or track [21], [22], [23]. But those works 

concentrate on one task and perform poorly on another on DAS 

vibration dataset. Furthermore, these object detection 

algorithms have not been optimized in accordance with the 

characteristics of DAS vibration signals, which would generate 

lots of unnecessary anchors and consume a significant amount 

of time to process the information of vibration duration. This 

gives rise to additional computational consumption and affects 

the performance and efficiency of the algorithm. 

Besides, weak vibration detection is also a challenging 

research issue, because the information of these signals is 

extremely meager in both temporal and spatial domains and 

they are prone to be confounded with background noise. Many 

researchers use specialty fibers or multimode fibers [24],[25], 

as well as integration of elastomer in Φ-OTDR to detect weak 

signals [26], [27]. The above schemes can increase the SNR of 

weak signals, which will increase the quality of the signal and 

may facilitate the tasks of localization and recognition. But 

these options are expensive and limited in the long-distance 

detection. In terms of location and recognition tasks, it is 

feasible to use only ordinary single-mode optical fiber and more 

efficient post-processing algorithm to realize those tasks of 

weak vibration signals. 

To solve the two problems, we propose a location and 

recognition convolutional neural network (LR-Net) model. 

This end-to-end model can simultaneously locate and classify 

multiple vibration signals in a single sample. Within this 

network, a portion of the computational processes and 

parameters can be shared, which significantly enhances 

processing efficiency and minimizes the overall computing 

time and resource consumption. The experimental results show 

that the proposed model can achieve a high mAP of 99.1% and 

a fast predict speed of 2.2ms for six types of vibration events 

with location error of ±1.5 m. The primary points of innovation 

are as follows. 

(1) A novel groups convolutional backbone is designed to 

extract features from time-space matrix composed of phase 

data. During the extraction process, the spatial dimensions 

remain constant while the temporal information is subject to 

compression gradually. This approach facilitates rapid feature 

extraction while effectively preserving a greater amount of 

spatial information for end-to-end prediction. 

(2) In order to enable the model to focus on weak vibration 

and enhance its overall fitting ability, the location-attention-

mechanism feature fusion and Squeeze framework (LAMFS) 

and dynamic matching strategy (DMS) are proposed for the 

model. Through feature fusion across multiple scales and a 

dynamic training strategy for weak vibrations, the mAP of the 

model is 2.26% higher than that of the model without LAMFS 

and DMS in location and recognition of weak vibrations. 

(3) More importantly, a practical and novel one-dimensional 

prediction feature maps (OPFM) in LAMFS are used to reduce 

the number of impossible predictions and enhance both the 

efficiency and prediction speed of the model. the OPFM are 

obtained by squeezed the two-dimensional feature map. By 

fixing the vibration duration to match the size of the sample, we 

reduce the calculation volume and enhance the prediction 

speed, which is more applicable in practical scenarios. 

The proposed model effectively strengthens the intelligence 

and versatility of DAS and provides a more intelligent scheme 

for detection applications. The rest of this article is organized 

as follows: Section II introduces the basic technical principle of 

DAS. Section III describes the LR-Net based on LAMFS. 

Section IV presents comparative experiments and results with 

optimized typical CNN model (Faster-RCNN, YOLO-v11). 

Finally, the conclusion is included in Section V. Supplementary 

details about optimization of the LR-Net can be found in 

Appendix A. 

II. ARCHITECTURE OF DAS AND DATA COLLECTION  
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Fig. 1. The structure of distributed optical fiber sensing system. 

 

Fig. 1 illustrates the architecture of a DAS system. The 

detection process for vibration signals is outlined as follows: 

When external vibrations are transmitted to the fiber the 

photoelastic effect induces difference in physical properties of 

the optical fiber, such as refractive index and length, leading to 

alterations in the phase of backward Rayleigh scattering light. 

This phase shift can be demodulated by a demodulator, 

allowing the vibrations to be sensed and transmitted to 

computer for data processing. Finally, these external vibrations 

will be precisely located and identified simultaneously by using 

a trained neural network in upper computer. 

A. The sensing principle and architecture of DAS 

DAS is a novel distributed optical fiber sensing technology 

using coherent detection on the basis of Φ-OTDR. The DAS we 

designed acquires the phase information of Rayleigh scattering 

light through spatial differential interferometry technology to 
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achieve the reconstruction of external vibration signals. The 

schematic diagram of the system is shown in Fig. 1. The Narrow 

Linewidth Laser (NLL) with 3kHz frequency width operating 

at 1550.12 nm was selected as the light source. The output of 

the NLL was split into two components, at 80% and 20% as the 

probe light and the local reference light by an optical coupler, 

respectively. The probe light is modulated by an acousto-optic 

modulator (AOM) into a probe pulse with a 150 MHz frequency 

shift. The probe pulse with pulse width of 100 ns and repetition 

rate of 2 kHz was amplified in an erbium-doped fiber amplifier 

(EDFA) and then it was injected into the sensing fiber through 

a circulator. The RBS light reflected from the sensing fiber 

mixed with the local reference light.  

The mixed signal is detected by a balanced photo detector 

(BPD) with 200 MHz bandwidth. The signals from coupler2 

(OC2) enter the PDs. Then, an 8-bit data acquisition card (DAQ) 

continuously sampled the output data with 1 GHz sampling rat. 

The phase demodulation was completed by IQ demodulation 

algorithm. when external vibrations induce fluctuations in the 

backward Rayleigh light power at specific points along the 

sensing fiber over time, the variations in the interference signal 

can be analyzed to reconstruct vibration information. Finally, 

the 2-D time-space matrix can be obtained by accumulating the 

temporal responses along the spatial axis 

B. DAS Dataset Description 

We have conducted field experiments in numerous important 

application scenarios of urban IOT and gathered data from 

urban oil and gas pipelines, highways, and industrial facilities. 

Ordinary armored single-mode optical cable (SMF-28e with a 

0.9mm polyethylene protective jacket) is used in the experiment. 

This data has been systematically summarized to create the 

DAS dataset. According to field records, we identified and 

labeled vibration events. The labels including information with 

the types of events and its spatial positions (including both 

starting and ending points). The annotation error should be less 

than 1m, which is consistent with the physical resolution of the 

optical fiber (each node represents 1m), ensuring that the label 

reflects the actual spatial range within the hardware limitations.   

In the experiments of the above scenarios, we all adopted a 

DAS with a pulse repetition rate of 2 kHz and set the spatial 

resolution to 1m. All samples are split into time-space matrices 

with the size 2000×100, which represents 1s and 100m. Fig. 2 

illustrates the amplitude of the time-domain matrices for 

samples. 

In the experiment, six categories of events are collected for 

model training and validation. Including Background noise 

(No. 0): the noise generated by vehicles running on the road, 

the noise of production activities, etc; Non-contact weak 

vibration (No. Ⅰ): A person slightly walks near the fiber without 

touching the fiber, a person walks or talks further away from 

the fiber, maintaining a distance of 2 to 5 meters between the 

person and the optical fiber; weak vibrations represent a 

category of signals that are characterized by their diminutive 

scale in both temporal and spatial dimensions. Shaking (No. Ⅱ): 

a person shakes the optical fiber with his hand; Digging (No. 

Ⅲ): A person uses a shovel to dig the ground; Excavating (No. 

Ⅳ): A excavator digs on ground; Slapping (No. Ⅴ): A person 

slaps against fence or wall where optical fibers are laid. 

TABLE I 
NUMBER AND CATEGORY OF SAMPLES 

Events 
Single /Multiple 
categories in one 

sample 

Train/Val 

Samples 

Background noise (No.0) single 310/100 

Weak vibration (No. Ⅰ) single 210/90 

Shaking (No. Ⅱ) single 234/63 

Digging (No. Ⅲ) single 225/90 

Excavating (No. Ⅳ) single 327/114 

Slapping (No. Ⅴ) single 228/105 

Multiple categories 

 (No. I-Ⅴ) 
multiple 693/216 

Total number - 2227/778 

 

To enhance the accuracy of the annotation, we complete the 

annotation through a method of manual annotation by 

professionals combined with on-site video record verification.  

With the help of some auxiliary software written in python, 

professionals first quickly screen out possible signals that 

exceed three times the average noise level, and then further 

label them in combination with the on-site video record. 

 

 
Fig. 2. The amplitude images of the time-space matrix for samples with 
six kinds of events. (a)-(f) Each sample has only one category of event. 
(g)-(i) Each sample has multiple events. 
 

All the datasets are divided into validation sets and train sets. 

Their respective quantities presented in the table Ⅰ. Data 

augmentation can expand the scale and diversity of the data set 

through a series of operations on existing data [28]. Cyclic shift 

operations of {-10m, -20m, 10m, 20m} are employed in the 

horizontal direction. During this process, only the samples in 

which no events have crossed the boundary are retained. This is 

used to simulate events at various positions for data 

augmentation, thereby enhancing the generalization capability 

and robustness of the model. After augmentation, the entire 

dataset expands to about 4 times its original size. 
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Fig. 3. Overview of LR-Net. The efficient feature extraction and fusion structure transforms the 2-d feature pyramid into one-dimensional prediction 
feature maps through the LAMFS. Finally, the vibration type and range are obtained through the detection head and post-process

III. LOCATION AND RECOGNITION CONVOLUTIONAL NEURAL 

NETWORK 

We propose an anchor-based LR-Net to classify and locate 

the vibration event. The primary architecture of the network is 

shown in Fig. 3. 

A. Architecture of LR-Net 

In the process of forward propagation, the network generates 

probability for the presence of each object category and 

adjustment parameters for the default anchors to match the true 

vibration ranges. The whole network consists four stages: 

Backbone, Feature extraction and fusion with attention, Detect 

Head and Post-process. In the Backbone, G-block contains of 

three G_ Conv 

 

𝑂 = 𝑓 (∑ 𝑤𝑖 ⋅ 𝐺𝑖 + 𝑏𝑖
𝑖=1,2,…,𝑛

) (1) 

 

The group convolution process can be described as (1). 

According to the number of sensor nodes in a sample, we divide 

the input into n groups (G1, G2, G3, ..., Gi, ..., Gn). 

Next, the n convolution kernels (C1, C2, C3...Ci ...Cn) are 

used to extract feature from each group.𝑤𝑖  is the weight of the 

i-th convolution kernel, 𝑏𝑖 is the bias, f represents a nonlinear 

activation function. The O is the output. Due to the imbalance 

between the time dimension and the space dimension of 

vibration data, G-block is employed for initial feature extraction 

to accelerate the convergence of the model. 

This approach enables the model to acquire the vibration 

characteristics at diverse vibration positions. Then achieve 

feature extraction in the time dimension while maintaining the 

space dimension invariant. After G-block, the original non-

equilibrium input becomes a balanced feature map with a size 

of (100, 100).  

The group convolution backbone is uniquely tailored to DAS 

time-space matrices. It aligns with DAS’s spatial node 

independence by partitioning inputs into spatial groups, using 

dedicated kernels to avoid cross-position interference and 

preserve critical spatial cues for local features like weak 

vibrations; Additionally, it balances the imbalanced temporal-

spatial dimensions by squeezing redundant temporal 

information while retaining 100-node spatial resolution for 

precise localization; Furthermore, the architecture reduces 

computational complexity via intra-group parameter sharing, 

enabling efficiency critical for large-scale DAS. 

To increase the correlation among each output of group 

convolution and acquire prediction feature maps with different 

receptive fields, the FP-Block stacked by four RES-Block are 

added to produce the 2-D feature pyramid. 

The sizes of the feature maps used for predicting signals with 

diverse vibration ranges vary significantly. The vibration 

signals characterized by broad vibration ranges are predicted 

using small feature maps with extensive receptive fields, while 

those with narrow vibration ranges are forecasted through large 

feature maps that possess small receptive fields.  

In the feature extraction and fusion with attention stage, 

feature fusion is conducted among the feature pyramid, and 

location-attention-mechanism feature fusion and Squeeze 

framework (LAMFS) is proposed to further intensify the focus 
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of the location task. In feature maps, the semantic information 

of low-level features is comparatively limited, whereas the 

location information of targets is abundant. Conversely, the 

high-level features possess rich semantic information, the 

localization information for targets remains relatively coarse. 

Inspired by the FP-Net [29], the features from features pyramid 

are fused to realize the intended effect.  

In this process, the feature maps of each layer are conducted 

by 2D conv, and then the feature maps of the upper layer are 

up-sampled and added with the feature maps from the lower 

layer. Further, in order to reduce the amount of computation, 

we add g-conv to feature extraction and squeeze the feature 

maps. Finally, in LAMFS shown in the Fig. 3, the bottom 

feature map P4 from the feature pyramid serves as positional 

weight information to facilitate a second feature fusion with the 

results from the preceding feature fusion. which is fused with 

high-level features via Hadamard Product to emphasize 

spatially relevant regions. This ensures spatial information are 

not diluted during squeezing.  

The LAMFS contains g-conv to squeeze the feature maps for 

original feature map and N+1 1D convolutions to adjust the 

number of channels. The prediction feature maps are obtained 

by fusing the two outputs with the Hadamard Product in fusion 

blocks. After the process of LAMFS, all output feature maps 

are squeezed from two-dimensional to one-dimensional feature 

maps along the time dimension, and one-dimensional 

prediction feature maps (OPFM) are obtained. This operation 

dynamically emphasizes spatially relevant regions by 

weighting high-level semantic features with low-level spatial 

information, while preserving both channel-wise semantic 

information (for classification) and the full spatial dimension 

(for localization). 

During the stage of Detect Head, the network generates 

adjustment parameter on default anchor and probability for 

each event category. Its structure is shown in Fig. 4. Both tasks 

are accomplished via two 1D Conv with a kernel size of 3. The 

channels of output for classification task and localization task 

are 6 and 2 respectively, representing the number of event 

categories and the number of adjustment parameter. Every 

element of OPFM is used for predictions on default anchor with 

three widths. The design of 1D Conv retains the spatial 

background, reduces model parameters and computational 

complexity, and is more adaptable to vibration events of 

different scales. 

 

 
Fig. 4. Detect Head 

 

To simplify the task of location prediction, a set of default 

widths is initially established at each level of the prediction 

feature map. During of training, the adjustment parameters 

generated by the Detect Head are applied to the default anchors, 

allowing these anchors to be continuously adjusted to better 

approximate the ground truth over numerous epochs. 

B. Dynamic matching strategy to enhance weak 
vibration detection 

During the training phase, it is essential to determine which 

default anchor aligns with the ground truth for training the 

network. The DMS effectively select positive and negative 

samples from default anchor by balancing the IOU (Intersection 

over Union) between the default anchor and ground truth, as 

well as the prediction probability. The IOU pertains to the one-

dimensional length IOU on the horizontal axis.  

 

𝑆 = 𝛿𝑠𝑖𝑜𝑢
𝛼 + 𝑠𝑝

𝛽 (2) 

 

As (2) showed, Siou is the length IOU between the default 

anchors and ground truth, SP is the prediction probability of 

each predicted proposal. α, β and δ is the hyperparameter to 

balance these two parts. After manual tuning, α, β and δ were 

respectively set to 1.2, 0.7and 0.3. The topk default anchors 

with the highest S are selected as positive samples. Since weak 

signals are hard to fit, the SP of weak vibration is usually low. 

By reducing α to enhance the contribution of the SP part and 

increasing α to decrease contribution of the 𝑠𝑖𝑜𝑢, more default 

anchors matching with weak signals can be dynamically 

selected as positive samples. In this way, the model can 

concentrate more on training these weak samples and ultimately 

enhance the prediction ability of weak vibration samples. 

C. Objective Function and Post-process operation 

 

𝐿𝑜𝑠𝑠 =
1

𝑁
 (𝐴 ∙ 𝐿𝑐𝑙𝑠 + 𝐵 ∙ 𝐿𝑙𝑜𝑐) (3) 

 

The loss function is combined with classification loss Lcls and 

location loss Lloc. N is the number of positive samples. A and B 

is hyperparameter weight for loss function. When no positive 

sample is matched, the loss set to zero. 

The classification loss is the focal loss over multiple classes 

confidences, which is employed to suppress the issue of 

quantity imbalance between positive and negative samples. 

 

𝐿𝑐𝑙𝑠  = (1 − 𝑝𝑡)𝛾  ⋅ log(𝑝𝑡) (4) 

 

The 𝑝𝑡 represents the probability that the model predicts a 

positive class. 𝛾  is hyperparameter, and set to 2.5 in the 

experiment. 𝑦 is label with one-hot code.  

 

𝐿𝑙𝑜𝑐 = ∑ ∑
𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖

𝑥 −  𝑔𝑗
𝑥)

+𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖
𝑤 −  𝑔𝑗

𝑤)

𝑁

𝑖∈𝑝𝑜𝑠

𝑀

𝑗

(5) 

 

The location loss is the distance of predicted adjustment 

parameters 𝑡𝑖
𝑥, 𝑡𝑖

𝑤  and real adjustment parameters 𝑔𝑗
𝑥 , 𝑔𝑗

𝑤 . 

The 𝑡𝑖
𝑥, 𝑡𝑖

𝑤  are the predicted adjustment parameters of center 

and width of i-th default anchor corresponding to the j-th 

ground truth. And the 𝑔𝑗
𝑥, 𝑔𝑗

𝑤  are the adjustment parameters 
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of center and width of the j-th ground truth, respectively. They 

are calculated by the formula (5). N represents the quantity of 

positive samples that are matched, and M represents the number 

of ground truth. 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1  function is adopted to assess the 

distance between the predicted adjustment parameters and the 

actual adjustment parameters [30]. Only the 𝐿𝑙𝑜𝑐   of positive 

samples and 𝐿𝑐𝑙𝑠  are computed and propagated backward, 

while the 𝐿𝑙𝑜𝑐   of negative samples is not calculated. 

During the process of model prediction, post-processing 

primarily conducts four operations. First, the prediction 

adjustment parameters are applied to the default anchors to 

obtain the predicted proposals. This process is achieved through 

the (6). 

 
𝑔𝑥̂ =  𝑑𝑤𝑝𝑥 + 𝑑𝑥 , 𝑔𝑤̂ = 𝑑𝑤 exp(𝑝𝑤) (6) 

 

The center point and width of predicted proposals are 

denoted as 𝑔𝑥̂  and 𝑔𝑤̂ , while 𝑝𝑤  and 𝑝𝑥  represent the 

predicted width adjustment parameters and the predicted center 

point adjustment parameters. 𝑑𝑤  and 𝑑𝑥  are the center and 

width of the default anchor. Subsequently, some proposals with 

low probabilities such as 0.05 are filtered out. Proposals that 

exceed the samples length will be cropped to no more than the 

sample length. Finally, the predicted proposals with the same 

category will be filtered by NMS (Non-Maximum 

Suppression). When multiple signals are detected, numerous 

overlapping or similar predicted proposals might be generated. 

Through the non-maximum suppression algorithm, those 

proposals with lower prediction probabilities and higher 

degrees of overlap can be eliminated, and only the most 

representative ones can be retained. 

The model has been optimized to achieve optimal 

recognition, localization, and real-time performance, as detailed 

in Appendix A. It is tested using the training and validation sets 

obtained from the field, as outlined in Section II. 

IV. EXPERIMENT AND RESULTS ANALYSIS 

In this section, we carried out the controlled experiment to 

assess the effectiveness and generalization ability of the 

proposed algorithm in comparison with the optimized algorithm 

Faster R-CNN [30] and YOLO-v11 [31]. Considering those 

algorithms are typical algorithms for Object Detection, we have 

undertaken specific optimizations for the task of localization 

and recognition of vibration signal. The major optimization 

involves the addition of G-conv blocks in the initial layer of the 

backbone network and the application of OPFM in head 

detection. These optimizations aim to extract balanced features 

from imbalanced DAS data and output the category and 

vibration range of the signal. 

A. Performance Comparison 

In the experiment, the adaptive moment estimation (Adam) 

optimizer is used to update the parameters. Throughout the 

process of the training, we use the validation set to validate 

and evaluate the trained network after all training iterations in 

each epoch. It can be considered as successful location and 

recognition when both the IOU and prediction probability 

surpass a specified threshold, provided that the predicted label 

is accurate.  

The mean Average Precision (mAP) and loss curves are 

shown on Fig. 5. The AP represents the area under the 

precision-recall curve, which provides a comprehensive 

assessment of both recall and precision for the model. 

 

 
Fig. 5. mAP and loss on validation dataset 

 

The mAP denotes the mean AP value across various 

threshold of IOU and prediction probability. As can be seen 

from the Fig. 5, the mAP curve of the proposed LR-Net tends 

to be stable after about 20 epochs, and the mAP value is higher 

than that of YOLO and Faster R-CNN. From the loss curve, 

the loss of LR-Net drops rapidly and remains at a low level 

continuously. 

 
TABLE Ⅱ 

 VALIDATION MAP IN VARIOUS IOU THRESHOLD 

Model mAP𝑉𝐴𝐿(%) AP50
𝑉𝐴𝐿(%) AP75

𝑉𝐴𝐿(%) AP85
𝑉𝐴𝐿(%) 

F-RCNN 88.1 89.0 89.0 89.0 

YOLO 93.1 96.1 93.4 92.0 

LR-NET 99.1 99.5 99.3 99.2 

 

The mAP for each model is presented in the table Ⅱ. It is evident 

that the mAP of LP-Net achieves a value of 0.991, whereas those 

of Faster R-CNN and YOLO are comparatively lower at 0.881 

and 0.931, respectively. When the IOU thresholds are set at 0.5 

and 0.85, the AP for LR-Net reaches up to 0.995 and 0.992, 

respectively, indicating its performance is relatively high and can 

meet the needs of the field. 

 
TABLE Ⅲ 

PERFORMANCE ON EACH CATEGORY OF SAMPLES 

Method 
AP85

𝑉𝐴𝐿(%) 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

F-RCNN 80.9 86.1 89.0 91.3 98.1 

YOLO 85.6 93.1 94.9 86.6 99.9 

LR-NET 98.1 99.9 98.2 99.9 99.9 

 

In practical applications, the NAR and Missing Alarm Rate 

(MAR) are critical indicators for model performance. The typical 

relationship between NAR and MAR with the recall and precision 

is (7) and (8). 

 

𝑁𝐴𝑅 = 1 − 𝑝𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 = 1 −
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7) 
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Fig. 6. Precision and Recall confusion matrix with IOU threshold of 0.85 and probability threshold of 0.5 

 

𝑀𝐴𝑅 = 1 − 𝑟𝑒𝑐𝑎𝑙𝑙 = 1 −
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(8) 

 

Among them, TP, FP, and FN are True Positives, False 

Positives, and False Negatives respectively. Assume that the 

threshold of probability and IOU are 0.5 and 0.85 respectively, 

which are Suitable for practical applications. Then the precision 

and recall confusion matrices of the methods on validation 

dataset are displayed in Fig. 6. And the AP performance for 

each category is presented in Table Ⅲ. 

In the precision confusion matrices of LR-Net, YOLO, and 

Faster-RCNN, the first column represents the probability of 

redundant detection, while the first row is meaningless here. 

The diagonal elements represent the probability of correct 

detection, which corresponds to the precision for each category. 

Similarly, in the recall confusion matrices the first column lacks 

meaning, while the first row indicates the probability of missed 

detections. 

It is evident from the Fig. 6 that LP-Net can achieve the 

highest rate of recall and precision across all sample types. As 

for weak vibration, LP-Net can reach a recall rate and a 

precision rate of 96.1% and 97.1%, which is better than 84.6%, 

82.8% of YOLO, as well as the 95.7%, 39.6% of Faster-RCNN. 

In table Ⅲ, the proposed LR-Net achieved a 98.1% Validation 

AP for weak vibration, which is 10% and 18% higher than that 

of YOLO and Faster-RCNN, respectively. That suggests the 

proposed model can effectively focus on the weak signals, 

thereby strengthening the capacity to fit the weak signals.  

To further compare the performance of models across 

different IOU thresholds, we fixed the probability threshold at 

0.5. Subsequently, the average precision and recall of the three 

models at IOU values of 0.5, 0.75, and 0.85, along with the 

corresponding NAR and MAR, are summarized in Table Ⅳ. 

 
TABLE Ⅳ 

 AVERAGE PRECISION AND RECALL OF ALL SAMPLE CATEGORIES  

Model F-RCNN YOLO LR-NET 

Precision50
𝑉𝐴𝐿(%) 84.38 94.28 98.88 

Recall50
𝑉𝐴𝐿(%) 97.2 95.08 99.22 

Precision75
𝑉𝐴𝐿(%) 75.52 92.32 98.7 

Recall75
𝑉𝐴𝐿(%) 97.16 92.94 99.02 

Precision85
𝑉𝐴𝐿(%) 75.52 92.3 98.6 

Recall85
𝑉𝐴𝐿(%) 97.16 92.9 98.94 

NAR±5𝑚
𝑉𝐴𝐿 (%) 15.62 5.72 1.12 

MAR±5𝑚
𝑉𝐴𝐿 (%) 2.2 4.92 0.78 

NAR±2.5𝑚
𝑉𝐴𝐿 (%) 24.48 7.7 1.3 

MAR±2.5𝑚
𝑉𝐴𝐿 (%) 2.8 7.1 0.98 

NAR±1.5𝑚
𝑉𝐴𝐿 (%) 24.48 8.48 1.4 

MAR±1.5𝑚
𝑉𝐴𝐿 (%) 2.48 7.9 1.06 

 

The precision and recall of all models tend to decrease as the 

IOU threshold increases. At high IOU of 0.85 threshold, LR-

Net still maintains a better average precision and recall rate of 
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98.6% and 98.94%, respectively. Therefore, the proposed 

algorithm exhibits high precision and recall not only for 

ordinary signals but also for weak signals. 

This suggests that the algorithm demonstrates a high level of 

reliability and possesses the capability to detect potential targets 

in a more comprehensive manner. 

The calculation formula for location error E is as follows. 

 

E = Vlabel ∗ (1 − IOUthreshold) (9) 

 

Vlabel refers to the maximum labeled vibration length of the 

event. The maximum labeled vibration range for the all kinds of 

vibration signal was 20m. When the IOU threshold was set at 0.85, 

the maximal location error was 3m (±1.5m). 

Therefore, it can be considered that when the threshold of the 

IOU is 0.85, the overall position error is ±1.5m. As can be seen 

from the table Ⅳ, under the location error of ±1.5m the proposed 

algorithm LR-NET still had low NAR and MAR, which were 1.4% 

and 1.06% respectively.  

 

 
Fig. 7. Weak vibration and other vibration feature maps from Backbone. 

 

To analyze the distribution and characteristics of data, as well 

as to identify potential patterns and relationships, the 

representative features extracted from backbone were presented in 

Fig. 7. The extracted features of weak signals are in the form of 

points, while the features of ordinary signals are represented as 

bars. This observation suggests that the group convolutional 

backbone is proficient in feature extraction. Further, according to 

the characteristics of feature graphs, it offers valuable insights for 

subsequent feature squeeze in OPFM. 

Finally, the performance of real-time experiments for the 

localization and recognition of vibration signals is assessed on 

both GPU and CPU platforms. We use pytorch to implement the 

model on GPU GeForce 4060 and CPU Intel Core i7-13650. The 

evaluation of space complexity was conducted by the 

number of GOPS (Giga Operations per second).  

The predicted time refers to the total duration for a sample 

prediction, which includes both inference time and post-

processing time. The results of the comparison are shown in 

the figure Fig. 8 and table Ⅴ. 
The parameter of proposed LR-Net is 1.9M, which is only 

4.5% and 21.8% of the optimized two-stage model Faster-

RCNN and one-stage model YOLO-v11. 

 

TABLE Ⅴ 

COMPARISON OF COMPUTATION EFFICIENCY  

Model GOPS 
Params 

(M) 

Predict 

time 

(GPU) 

Predict 

time 

(CPU) 

Inference 

time 

(GPU) 

Inference 

time 

(CPU) 

F-RCNN 14.5 42.1 16.3ms 63.1ms 14.7ms 61.7ms 

YOLO 0. 403 8.7 3.2ms 8.4ms 2.0ms 8.2ms 

LR-NET 0.36 1.9 2.2ms 7.3ms 1.3ms 7.1ms 

 

 
Fig. 8. Computational complexity and speed: (a) GOPS, (b) Number of 
parameters, (c) Predict time and Inference time on GPU, (d) Predict time 
and Inference time on CPU. 
 

The computational complexity for the proposed model is 

0.36 GOPS. These two performance indicators imply that the 

proposed model exhibits enhanced efficiency and decreased 

complexity.  

The prediction time of the proposed LR-Net for a single time-

space matrix with size of 2000 ×100 was measured at just 2.2ms 

on GPU and 7.3ms on CPU respectively, which is significantly 

outperforming YOLO. It is important to emphasize that the input 

time-space matrix consists of only original phase data, which does 

not require compression or conversion into images, nor any other 

pre-processing operations. so that, the end-to-end prediction can 

be achieved.  

While the input time-space matrix size is relatively large, the 

group-conv backbone efficiently leverages and extracts the data, 

thereby significantly minimizing both computational resource 

expenditure and processing time.  

Furthermore, the model generates predictions based on OPFM, 

which substantially decreases the number of anchors and 

enhances the speed of model. As a result, DAS with tens of 

thousands of sensor nodes over extensive distances can facilitate 

location and recognition with greater ease. 

V. CONCLUSION 

This paper presents an end-to-end scheme for the location 

and recognition of DAS vibrations events based on LR-Net 
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model. The groups convolutional backbone, the location-

attention-mechanism feature fusion and Squeeze framework 

(LAMFS) and dynamic matching strategy (DMS) are proposed 

to enhance the model capabilities of vibration localization and 

recognition, particularly for weak vibration events. The 

experimental results demonstrate that the proposed LR-Net 

achieves a performance of 99.1% mAP and a 2.2ms prediction 

time for six types of events with a location error of ±1.5 m, 

which is better than optimized typical CNN models. The 

proposed algorithm exhibits high versatility and can be widely 

applied across multiple domains, including perimeter security, 

vibration tracking, and structural health monitoring. In the 

future, we intend to incorporate advanced signal enhancement 

techniques to improve the generalization capability of the 

network and further expand the scope of our research. Building 

upon the existing LR-Net as the foundational architecture, our 

objective is to integrate the radial vibration localization 

function in order to achieve two-dimensional vibration 

localization and recognition. 

APPENDIX 

DETAIL AND OPTIMIZATION OF THE LR-NET MODEL 

This section will detail the proposed model and present the 

optimization of the novel framework introduced in this article. 

These enhancements may facilitate its implementation and 

application across relevant domains. 

To demonstrate the efficacy of the proposed method, we 

performed a series of ablation studies and comparative analyses. 

 

 
Fig. 9. Validation Accuracy of location and recognition. The triangles 

(purple lines) from left to right indicate that the numbers of layers of 

OPFM are 2, 3, 4, 5, and 6 respectively. The squares (orange lines) from 

left to right indicate that the numbers of G-blocks are 1, 2, 3, 4, and 5 

respectively. 

 
TABLE Ⅵ 

ABLATION STUDY ON LAMFS AND DMS 

Mothod 
Eval mAP(%) 

Predict 

time 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ mAP (ms) 

SMS+FPN 95.8 98.33 97.40 98.27 98.63 97.68 2.1 

DMS+FPN 96 99.73 95.60 98.63 99.03 97.80 2.1 

SMS+LAMFS 97.7 99.86 97.80 99.00 99.86 98.84 2.2 

DMS+LAMFS 98.06 99.70 98.40 99.76 99.76 99.14 2.2 

 

First, the location and performance with mAP and predict time 

are shown in Fig. 9. These results are the validation results of the 

models with different numbers of one-dimensional prediction 

feature maps (OPFM) and the models with different numbers of G-

blocks in backbone. All models are trained and validated on the 

datasets in Table I in Section Ⅱ. 

It is evident that as the number of modules or layers increases, 

the mAP initially rises before subsequently declining. The model 

shows a progression in which its fitting capability gradually rises 

to the point of overfitting. When the number of prediction feature 

maps reaches 4 and the count of g blocks is 3, the model achieves 

its maximum accuracy rate of 99.18%. 

In addition, the impact of LAMFS and DMS on model are 

evaluated through ablation study. 

The table Ⅱ provides a summary of the mAP and predict times 

for the models with LAMFS and DMS, along with corresponding 

ablation study. 

At first, we employed a static sample-matching strategy and an 

FPN architecture. To enhance the efficiency of processing the DAS 

temporal-spatial matrix data and improve the learning ability for 

weak signals, we developed DMS and LAMFS. From the 

comparative results in table Ⅵ, it can be seen that the model with 

LAMFS and DMS has the highest mAP, demonstrating an 

improvement of 1.4% compared to models that do not use those. 

For the first category of weak vibration signals that are difficult to 

locate, the model achieved a 98.06% mAP, suggesting that those 

method effectively enable the model to concentrate on learning 

weak signals, thereby enhancing its capacity to fit such signals. 

Furthermore, as the added DMS operates only during the training 

phase, it does not augment the GOPS nor Slow down predict speed. 
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