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ABSTRACT
Inverse lithography technology (ILT) faces challenges in computational efficiency and mask regularity. This paper
proposes MODiff, a diffusion-based model that generates high-quality masks through a controlled “noise-to-mask”
denoising process guided by the target layout. The method incorporates a forward lithography simulator for
accuracy and a cosine scheduler for stable training. Evaluated on the ICCAD 2013 dataset, MODiff outperforms
state-of-the-art techniques in mask precision and edge smoothness, including on via layers.
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1. INTRODUCTION
With the continuous shrinkage of technology nodes, the mismatch between wafer-printed images and designed
graphics has become increasingly pronounced due to the inherent limitations of current lithography systems.1,2

Optical proximity correction (OPC), one of the critical resolution enhancement techniques (RETs), effectively
mitigates these discrepancies by directly adjusting the mask features, thereby reducing the likelihood of hotspot
formation.3 The primary approaches for OPC include rule-based OPC,1,2 model-based OPC,4–6 and inverse
lithography technology (ILT). Rule-based OPC relies heavily on heuristic experience, often failing to achieve a
global optimal solution. Model-based OPC suffers from limited flexibility, constraining the solution space. Inverse
lithography technology is a mathematically inverse approach that treats OPC as an inverse imaging problem
with pixel-by-pixel mask optimization. Additionally, the level-set method7,8 provides an implicit alternative. The
traditional ILT algorithm require substantial computational resources, and the mask generated is more complex.
Fortunately, the explosion of deep learning in recent years has provided more possibilities for mask optimization.
Among them, Yang et al.9 took the lead in applying conditional generation adversarial networks to realize the
end-to-end OPC process. Wang10 explored the integration of spatial attention maps and reinforcement learning
architecture to accelerate OPC. For the level-set-based method, Yu et al.8 used GPU to accelerate the iteration
of the level-set function. CircleOpt,11 as a state-of-the-art method, integrates arc constraints into the inverse
ILT flow to generate circle-based masks.

However, mask generation should be treated as a continuous optimization process, whereas most existing
models directly produce final results without an iterative refinement stage. The absence of a smooth prediction
process often results in unstable model training and discontinuities in the generated masks, which in turn reduce
mask accuracy and printability. Although the method based on the level-set function7,8 adopts the method
of iterating level-set function step by step to realize the continuous optimization of the mask, they are highly
dependent on the initial choice of the level-set function. Additionally, this model face challenges in incorporating
sub-resolution assist features (SRAFs), which are commonly used to enhance mask quality and achieve higher
precision optimization.12 As shown in Fig. 1, We can find that GAN-OPC and Neural-ILT are prone to violations
at the edge of the mask (marked in black boxes). GAN-OPC is more obvious, with a large number of burrs
made up of discrete pixels at the edges. Although the edge of the mask generated by the level-set-based method
is relatively smooth, it is difficult to introduce SRAFs and the mask accuracy is limited.



Figure 1. Illustration of optimized mask results from (a) GAN-OPC. (b) Neural-ILT. (c) Level-Set. (d) Ours.

Figure 2. OPC and lithography simulation flow.

As a state-of-the-art image generation framework, the diffusion model13 enables continuous mask synthesis
with superior detail fidelity, an essential capability that is lacking in previous methods. Building on this founda-
tion, we propose MODiff, a novel approach for mask optimization. MODiff adopts a ”noise-to-map” generative
paradigm, in which predictions are made by progressively denoising a random Gaussian distribution under the
guidance of the target layout. Major contributions include:

• We propose MODiff, a mask optimization model based on the diffusion model. Due to the continuity of
the model in the inference process and its ability to capture global information, the mask we generated has
higher precision, and the mask is more continuous and regular at the edge.

• We introduce forward lithography simulation to better combine diffusion models with mask optimization.
The mask optimization process is guided by the mismatch between printed image and target layout.

• We introduce a cosine schedule strategy specifically designed for mask optimization, which better balances
the denoising process and preserves fine mask details.

• The experimental results show that our model reaches state-of-the-art performance.

2. PRELIMINARIES
2.1 Lithography Simulation Model
Lithography simulation is designed to approximate the real lithography process in chip manufacturing, simulating
the mapping from the input mask M to the output wafer image Z. Lithography simulation includes optical
projection and photoresist models.14 The flow of OPC and lithography simulation is shown in Fig. 2. In optical
projection, the incident light passes through the mask, transmitting the spatial information of the mask patterns
M to the optical projection system, and then obtains the lithographic intensity distribution I on the wafer
plane. This process can be described by Hopskin’s diffraction theory:15

I(x, y) ≈
Nk∑
k=1

ωk |M(x, y)⊗ hk(x, y)|2 , (1)

Where hk and ωk are the Kth kernel and its weight respectively. We take Nk=24.16 ⊗ denotes the convolution
operation. | · |2 denotes computing the square modulus of each element.

The photoresist model transfers the aerial image I to the printed image Z. The model checks whether the
light intensity of the exposed area exceeds the threshold to generate wafer image Z:

Z(x, y) =

{
1, if I(x, y) ≥ Ith,

0, if I(x, y) < Ith.
(2)
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Figure 3. Illustration of the metrics: (a) Edge placement error. (b) Squared L2 error. (c) Process variation band.

2.2 Inverse Lithography Technology
ILT attempts to solve the problem of mask patterns to find an optimized mask solution M∗ = f−1(Ztg,Pnom)
for a given layout Ztg, where f(M ,P ) represents forward lithography simulation of mask M under process
conditions P . We can calculate the gradient of objective function f−1 to guide the adjustment of each pixel
value, and the best mask can be obtained after iterations.

To achieve gradient descent in the iterative learning method, the lithography model is designed as:

Z̄(x, y) =
1

1 + e−α(I(x,y)−Ith)
, (3)

M̄ =
1

1 + e−βM(x,y)
. (4)

Where Ith is the intensity threshold, α and β are used to control steepness, and (x, y) represents the coordinates
on the photoresist image.

2.3 OPC Evaluation Metrics and Problem Formation
The following are commonly used evaluation metrics in OPC, which are also used in our article:

Definition 1 (Squared L2 Error): Squared L2 error is calculated by ∥Ztg −Z∥22, where Ztg is the target
layout image and Z is the wafer image generated under normal process conditions Pnom.

Definition 2 (Process Variation Band): Process variation band (PVB) is an XOR region of two wafer
images Zin and Zout generated under minimum and maximum process conditions Pmin and Pmax (2% dose
error).

Definition 3 (Edge Placement Error): Edge placement error (EPE) measures the horizontal or vertical
distance D(x, y) from a given point (EPE measuring point) on the edge of the target to the lithographic profile.
If D(x, y) exceeds the threshold distance Dth, EPE is considered to be violated.

Problem 1 (Mask Optimization): The goal of mask optimization is to generate the corresponding mask
M according to the given target Ztg. After lithography simulation, the resisted image Z should be close to the
target image Ztg and should minimize L2 loss, PVB, and EPE.

3. ALGORITHMS AND FRAMEWORK
The overall framework of MODiff is illustrated in Fig. 4. In section 3.1, we first tailor the fundamentals of
diffusion models to the requirements of the mask optimization task, and formulate the specific optimization
objective used in MODiff. In section 3.2, we design a forward lithography simulation module to explicitly
incorporate lithography-related information, ensuring that the model continuously improves the printed resist
images during optimization. In section 3.3, we present the detailed architecture of MODiff, together with the
training and inference procedures. Finally, in section 3.4, we introduce a progressive mask refinement strategy
with cosine diffusion scheduling, which enables higher-precision mask generation.



3.1 Diffusion Model
Diffusion model17 builds a forward Markov chain that converts clean data into noise by gradually adding a small
amount of Gaussian noise, so that a parameterized de-noising network can be learned to predict the noise added
at each forward step.

Specifically, in the training stage, a forward Markov chain diffusion process q is defined, in which Gaussian
noise is gradually added to the initial image y0 in the diffusion of T step, where T is called the number of diffusion
steps, and in ILT tasks, y0 is the reference mask M∗.

q(y1:T | y0) = q(y1 | y0)
T∏

t=2

q(yt | yt−1), (5)

q(yt | yt−1) = N (
√
αtyt−1, (1− αt)I) , (6)

Where α1:T ∈ (0, 1) is the hyperparameter, which controls the variance of noise added at each diffusion, and I
is the unit variance. At the same time, for each diffusion, the mean decreases with coefficient √α1:T . Therefore,
when t→∞, q(yt) ∼ N (0, 1). In other words, after sufficient diffusion of the reference mask M∗, the image will
gradually become pure Gaussian noise. Combined with (5) and (6), the intermediate process can be simplified
and diffused directly from y0 to yt:

q(yt | y0) = N
(√

ᾱty0, (1− ᾱt)I
)
, (7)

ᾱt =

t∏
i=1

αi. (8)

The inverse process of the diffusion model starts from the pure noise image yT ∼ N (0, 1). According to
the learned conditional transfer distribution pθ(yt−1 | yt), and the image can be iterated continuously to the
previous step (yT → yT−1 → · · · → y2 → y1). We expect pθ(yt−1 | yt) to approximate q(yt−1 | yt, y0), which
can be derived a closed form of Gaussian distribution according to (5)–(8) and Bayes’ theorem.18 The posterior
distribution of yt−1 is given as:

q(yt−1 | yt, y0) = N (µq(yt, y0),Σq(t)), (9)

µq(yt, y0) =

√
αt(1− ᾱt−1)yt +

√
ᾱt−1(1− αt)y0

1− ᾱt
, (10)

Σq(t) =
(1− αt)(1− ᾱt−1)

1− ᾱt
I = σ2

q (t)I. (11)

The MODiff needs to learn how to reverse this process, the inverse diffusion process Pθ, θ represents the
parameters of the neural network:

pθ(yt−1 | yt) = N (yt−1;µθ,Σq(t)) (12)

µθ(yt, t) =
1
√
αt

(
yt −

1− αt√
1− ᾱt

ϵ̂θ

)
(13)

The loss function at step t is:

DKL(q(yt−1 | yt, y0) ∥ pθ(yt−1 | yt)) =
1

2σ2
q (t)
∥µθ − µq∥22 =

1

2σ2
q (t)

(1− αt)
2

(1− ᾱt)αt

[
∥ϵ− ϵ̂θ(yt, t)∥22

]
, (14)

where ϵ represents the noise of the diffusion process, randomly sampled from the standard Gaussian distribution.
ϵ̂θ(yt, t) is the predicted noise given by the model. As can be seen from (14), the model is essentially trained to
predict the noise at each diffusion step, rather than directly regressing the initial clean mask. This formulation
allows the error to be controlled at each reverse diffusion step, thereby improving the robustness of the model.

In MODiff, to ensure the strict correspondence between the target and mask, an additional image target Ztg

needs to be introduced to guide the prediction of noise. Therefore, the noise predicted loss at step t is:

Lnoise_t = ∥ϵ− ϵ̂θ (yt, t,Ztg)∥22 . (15)
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Figure 4. Overview of MODiff: (a) Training process. (b) Inference process.

3.2 Forward Lithography Simulation Module
After the model completes its learning of noise patterns, the mask M can be reconstructed through reverse
diffusion. However, since the reference mask M∗ itself contains inherent errors, strictly replicating it would limit
the model’s ultimate accuracy. We treat the model’s noise-learning phase as a pretraining step, after which the
formal training objective shifts to ensuring that the printed image Z matches the original target image Ztg as
closely as possible.

To perform forward lithography simulation, we first need to obtain the initial mask generated by the model.
Unfortunately, the generation of the mask by our MODiff requires step-by-step reasoning. If full-step inference
is adopted, the computational resource consumption and training time will be extremely high.

Inspired by the forward and backward symmetry of diffusion processes, we propose an approximate method
to introduce lithography losses. In the training stage, for the image yt of step t, we do not gradually deduce from
the reverse diffusion process, but directly use the result of forward diffusion to approximate according to (7). The
image yt−1 is obtained by one-step inverse diffusion according to (12), and the lithography loss of yt−1 can guide
the noise prediction of step t. While significantly conserving computational resources, the arbitrary selection of
t allows us to guide each step of the reverse diffusion process using the lithography simulation module, thereby
steering the inverse diffusion toward minimizing the L2 error. The lithography error of step t is:

Llitho_t = ∥Ztg −Zt−1∥22, (16)

where Zt−1 represents the result of the mask at step (t− 1) after lithography simulation. Combining (1) – (4),
(16) can be further derived:

Llitho_t = ∥Ztg − f(µθ(yt, t) + σq(t)ϵ,Pnom)∥22. (17)

The gradient of lithography loss can be deduced by the chain rule:

∂Zt−1

∂θ
=

∂Zt−1

∂f
· ∂f

∂yt−1
· ∂yt−1

∂µθ
· ∂µθ

∂ϵ̂θ
· ∂ϵ̂θ
∂θ

, (18)

∂Llitho_t

∂θ
= −2(Ztg − Zt−1) ·

∂f

∂yt−1
· 1− αt√

αt(1− ᾱt)
· ∂ϵ̂θ
∂θ

. (19)

It can be found that the gradient of lithography loss can be converted to the gradient of noise prediction loss.
The total loss function at step t is:

Lt = (1− w) ∗ Lnoise_t + w ∗ Llitho_t, (20)

where w represents the weight of lithography loss. Considering that the more steps of inference, the closer the
intermediate image is to the reference mask, we let w gradually increase as t decreases.



Algorithm 1 MODiff Training Process
Input: Training data D, Diffusion time step T , Model to be trained model.

1: for Target layout Ztg, Reference mask M∗ in D do
2: t← Take a random sample from T ;
3: y0 ←M∗;
4: ϵ← sample random noise;
5: yt ← from y0 to step t according to (7);
6: ϵ̂θ ←noise predicted by model(yt, t,Ztg)

7: Lnoise_t = ∥ϵ− ϵ̂θ∥22;
8: if pretrain then
9: Lt = Lnoise_t;

10: else
11: yt−1 ← reverse diffusion according to (12);
12: Zt−1 ← f(yt−1,Pnom);
13: Llitho_t ← ∥Ztg −Zt−1∥22;
14: Lt ← (1− w) ∗ Lnoise_t + w ∗ Llitho_t;
15: end if
16: ∇θ ← ∂Lt

∂θ ;
17: θ ← θ − η∇θ; ▷ η is the learning rate
18: end for

Algorithm 2 MODiff Inference Process
Input: Target layout Ztg, Diffusion time step T , Well-trained model model.
Output: Optimized mask M .

1: yT ← sample random noise image;
2: for t in T ∼ 1 do
3: ϵ̂θ ← noise predicted by model(yt, t,Ztg);
4: yt−1 ← perform reverse diffusion according to (12);
5: end for
6: M ← y0;

3.3 Framework of MODiff
The structure of MODiff is shown in Fig. 4. It should be noted in particular that “ResNet Block” represents
the residual module, and “Spatial Transformer” refers to the self-attention module. “Noise Correction” and
“Litho Correction” represent the correction of model parameters by backpropagation of noise prediction loss and
lithography loss, respectively.

The training process of the model is shown in Fig. 4 (a), and a more detailed description is provided in
Algorithm 1. In MODiff, diffusion begins with the reference mask M∗. As shown in the second line: during the
training progress, for each training image, we only select a time step t with equal probability between 1 and T ,
and only calculate the loss in this time step. Over many iterations, the model is exposed to all timesteps, which
preserves training effectiveness while significantly reducing computational cost. We consider only the noise loss
during the pretraining phase, while incorporating the lithography loss in the training phase.

The inference process of the model is shown in Fig. 4 (b) and a detailed procedure is provided in Algorithm
2. With continuous iteration, the desired mask will eventually be obtained.

3.4 Progressive Mask Refinement via Cosine Diffusion Scheduling
In conventional diffusion models, the noise scheduling strategy plays a pivotal role in the quality of generation.
Traditional linear scheduling often leads to an imbalance between global and local generation, as well as edge-
blending artifacts. For our mask optimization task which demands precise control of mask features, we introduce
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Figure 6. Masks generated by several different methods

a cosine schedule strategy to address these limitations:

ᾱt =
cos2

(
t
T +s

1+s ·
π
2

)
cos2

(
s

1+s ·
π
2

) , s = 0.006 (21)

This scheduling approach enables the model to maintain gradual noise reduction during the initial and final
denoising phases while achieving accelerated noise removal in the intermediate stage. Specifically, during the
early reverse diffusion steps, the model can generate global structures under high-noise conditions. The middle
steps rapidly eliminate noise to refine internal details within the masked regions. Finally, low-noise fine-tuning
further enhances the precision of the mask. This progression is clearly illustrated in Fig. 5.

4. EXPERIMENTAL RESULTS
We use Pytorch to implement the entire framework of MODiff and test it on a Linux system. All the framework is
equipped with a single Nvidia H800 GPU. Our training dataset is obtained from an open-source OPC dataset,13

which contains target images along with their corresponding reference masks. Our evaluation dataset is provided



Table 1. Comparison with ILT methods based on generative neural network on ICCAD 2013 dataset
ILT16 PGAN-OPC9 Neural-ILT20 Ours

Bench EPE L2 PVB EPE L2 PVB EPE L2 PVB EPE L2 PVB
(nm2) (nm2) (nm2) (nm2) (nm2) (nm2) (nm2) (nm2)

case1 6 49863 65534 8 52570 56267 8 50795 63695 3 39925 50475
case2 10 50369 48230 13 42253 56267 3 36969 60232 0 31241 38670
case3 59 81007 108608 51 83663 94498 52 94447 85358 20 62283 82785
case4 1 20044 28285 2 19965 28957 2 1742 32287 1 11381 23482
case5 6 44656 58835 8 44733 59328 3 42337 65536 0 33376 52293
case6 1 57375 48739 12 46062 52845 5 39601 59247 0 31188 47542
case7 0 37221 43490 7 26438 47981 0 25424 50109 0 17733 39307
case8 2 19782 22846 0 17690 23564 0 15588 25826 0 14366 20541
case9 6 55399 66331 12 56125 65417 2 52304 68650 0 37170 61683
case10 0 24381 18097 0 9990 19893 0 10153 22443 0 11426 16552

Average 9.1 44012.7 50899.5 11.3 39948.9 49957.2 7.5 38503.8 53338.3 2.4 29008.9 43335.0
Ratio 3.79 1.52 1.17 4.71 1.38 1.15 3.12 1.33 1.23 1 1 1

Table 2. Comparison with ILT methods based on other models on ICCAD 2013 dataset
GLS-ILT8 A2-ILT10 CircleOpt11 Ours

Bench EPE L2 PVB EPE L2 PVB EPE L2 PVB EPE L2 PVB
(nm2) (nm2) (nm2) (nm2) (nm2) (nm2) (nm2) (nm2)

case1 10 46032 62693 7 45824 59136 3 43358 46905 3 39925 50475
case2 1 36177 50642 3 33976 52054 1 35496 37920 0 31241 38670
case3 64 71178 100945 62 94634 82661 32 75206 66241 20 62283 82785
case4 2 16345 29831 2 20405 29435 1 13205 23234 1 11381 23482
case5 1 47103 56328 1 37038 62068 1 34938 53110 0 33376 52293
case6 2 46205 51033 2 40701 54842 0 36797 44269 0 31188 47542
case7 0 28609 44953 0 21840 48474 0 21036 41118 0 17733 39307
case8 0 19477 22541 0 14912 24598 0 13906 19859 0 14366 20541
case9 0 52613 62568 2 47489 68056 1 47844 54624 0 37170 61683
case10 0 22415 18769 0 9399 20243 0 9107 16969 0 11426 16552

Average 8.0 38645.4 50030.3 7.9 36621.8 50156.7 3,9 33089.3 40451.5 2.4 29008.9 43335.0
Ratio 3.33 1.33 1.15 3.30 1.26 1.16 1.625 1.14 0.93 1 1 1

by the ICCAD 2013 CAD Contest.19 We use “L2”, “PVB”, and “EPE” to evaluate the results. The diffusion
time step T is 2000. (1− α1:T ) increases from 0.0001 to 0.02.

4.1 Comparison With State-of-the-Art Methods
We compare the proposed MODiff with the conventional ILT16 method and other state-of-the-art ILT methods,
including level-set-based methods8 as well as other machine learning-based methods.9,10,20,21 We present the
results of the model based on generative neural network in Table 1, and the results based on other methods in
Table 2. The “ILT” shown in the first column of Table 1 refers to the conventional ILT algorithm. Compared
to the conventional ILT,16 the L2 and PVB of our MODiff decreased by 52% and 17%, respectively. We also
achieved a 279% reduction in EPE violations. Meanwhile, in comparison with the level-set-based method GLS-
ILT,8 Our L2 decreased by 33%, PVB decreased by 15%, and EPE decreased by 233%. In comparison to the
state-of-the-art CircleOpt,11 our model achieved a 14% reduction in L2 and an 62.5% reduction in EPE.

We show the masks generated by several different sets of models in Fig. 6. Compared with models9,10,20 that
predict masks directly, our model can generate more regular and continuous masks, significantly enhancing both
pattern fidelity and printability.



Figure 7. Average runtime comparison with SOTA.
Table 3. Ablation Study on Model Enhancements

Linear schedule Cosine schedule MODiff
EPE 4.2 2.6 2.4

L2(nm
2) 30931.0 29906.3 29008.9

PVB (nm2) 42722.2 43211.0 43335.0

4.2 Runtime Comparison With SOTA
The average runtime of each model on the ICCAD 2013 dataset is illustrated in Fig. 7. The results show that our
approach achieves a 33.77×speedup over conventional ILT.16 Compared to level-set-based methods8 that also
employ continuous prediction, our method delivers a 4.29×faster performance. Although our runtime is slightly
longer than that of direct-prediction models,10,20 the trade-off is justified by our masks’ higher accuracy and
more geometrically regular shapes.

4.3 Ablation Study on Model Enhancements
We evaluated models with different configurations on the ICCAD 2013 dataset, with average results presented
in Table 3. The first two columns show the pretraining-only performance using linear and cosine scheduling
respectively, while the last column incorporates the lithography simulation module with cosine scheduling. Our
analysis reveals that cosine scheduling reduces the mask L2 loss by 3.4% and achieves a remarkable 61.5%
decrease in EPE. Through careful examination, we found that this significant EPE improvement under cosine
scheduling primarily stems from case 3, which is the most complex scenario in our evaluation, demonstrating the
superior capability of our scheduler in preserving mask details.

With the introduction of lithography loss, we observe additional reductions of 3.1% in L2 and 8.4% in EPE,
confirming that our lithography simulation module effectively guides the diffusion process toward minimizing
pattern discrepancies. While the model’s emphasis on L2 optimization leads to a marginal increase in PVB ,
this trade-off is justified by the substantial improvement in mask accuracy.

4.4 Comparison on the Via Layer
We also tested our model on the via layer,13 which contains ten 2µm × 2µm clips with varying numbers of
70 nm × 70 nm via patterns.

The average test results for these 10 patterns are shown in Table 4. Our model also performs well on the via
layer. Compared with PGAN-OPC,9 although we are slightly inferior in PVB, we achieved a 41.0% reduction in
L2. Compared to Neural-ILT,20 our model achieved a 21.4% reduction in L2 and an 11.7% reduction in PVB.
Our model also had fewer EPE violations, achieving reductions of 88.6% and 41.0%, respectively.



Table 4. Results comparison on via layer
PGAN-OPC9 Neural-ILT20 Ours

EPE 8.3 6.2 4.4
L2(nm

2) 14767 12723 10477
PVB (nm2) 6686 8537 7644

5. CONCLUSION
In this paper, we propose the MODiff, a model based on diffusion model. We use a “noise to map” generative
paradigm to make predictions by progressively removing noise from a random Gaussian distribution, guided by
the target layout. A forward lithography simulation-based module is integrated to improve the mask accuracy.
We also introduce a cosine scheduling strategy specifically designed for mask optimization.We tested on the data
set given by ICCAD 2013 CAD Contest. Compared to state-of-the-art ILT models, we achieved better results,
more regular edges of the mask, and we also showed the mask generation process. Our model shows strong
generalization ability, delivering promising results on the via layer.
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