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Abstract
With the advancement of semiconductor technology and the con-
tinuous miniaturization of integrated circuit components, detecting
the hotspots in layout designs becomes increasingly challenging.
This has led to the emergence of numerous deep learning-based
hotspot detectors in recent years. However, existing deep learning
methods rely heavily on parameters that are closely related to the
hotspots defined in the training dataset, which makes the model
sensitive to parameters and requires a significant amount of hu-
man effort to adjust for different product design parameters. This
greatly limits flexibility and generalization. To address these issues,
we propose an anchor-free, end-to-end transformer-based hotspot
detector that removes the reliance on diverse handcrafted parame-
ters, enabling the model to focus directly on identifying potential
hotspot areas. In order to incorporate more prior knowledge into
the hotspot detector and improve the interpretability of hotspot
detection, we provide query variables to the detector through a
pretrained lithography simulator. We also introduce a query ini-
tialization module and a feature aggregation module based on the
transformer decoder to effectively integrate layout features and
lithographic priors. Experimental results validate the effectiveness
of our approach, demonstrating superior performance compared to
state-of-the-art methods.
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1 Introduction
With the rapid advancement of semiconductor technology, the
shrinking size of integrated circuit components is continually push-
ing the boundaries of current chip manufacturing processes. As the
feature sizes decrease, ensuring the printability of layout designs
becomes progressively more difficult, resulting in an increased oc-
currence of manufacturing defects. This challenge is particularly
pronounced in critical regions, known as hotspots, where the risk
of defects is heightened. Therefore, it is crucial to accurately and
efficiently locate hotspots in the layout.

Currently, there are three main methods for hotspot detection:
lithography simulation, pattern matching and machine learning.
Conventional lithography simulation is highly accurate but ex-
tremely time-consuming, rendering it impractical for large-scale
production environments. In contrast, pattern matching methods
use a set of predefined hotspot layout patterns to identify poten-
tial hotspots in a new design. Although faster than conventional
lithography simulation, pattern matching is limited by its inability
to detect novel or previously unseen hotspots.
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Figure 1: Illustration of the hotspot detection flow. (a) The
pipeline of the existing two-stage method. (b) The pipeline of
the existing one-stage method. They are both anchor-based
methods, which require themanual setting of a large number
of sensitive hyperparameters and post-processing. (c) The
pipeline of our proposed framework without hyperparame-
ters and post-processing.

Different from traditional pattern matching methods, machine
learning-based hotspot detection techniques, particularly deep learn-
ing approaches[1–7], have shown exceptional generalization capa-
bilities. By leveraging automated feature learning, these methods
have achieved significant improvements in both accuracy and ef-
ficiency. For example, as shown in Fig. 1(a), Chen developed a
two-stage hotspot detector based on Faster-RCNN[8]. Their model
employs an inception-based feature extractor and a clip proposal
network to generate region proposals and successfully addresses the
issue arising from the imbalanced data distribution[5]. As shown
in Fig. 1(b), Zhu proposed a more efficient one-stage detection
framework by eliminating the region proposal stage[6]. However,
there are still some issues with existing deep learning-based meth-
ods. The previous two-stage and one-stage hotspot detectors relied
on anchor-based model frameworks to generate candidate boxes,
which required the manual setting of a large number of sensitive
hyperparameters and post-processing. These hyperparameters in-
clude the sizes and aspect ratios of anchor boxes and so on, which
are used to define candidate regions for object detection. This ap-
proach lacks flexibility in adapting to hotspots of varying scales
and shapes. Furthermore, as shown in Fig. 1, existing methods still

require NMS (Non-Maximum Suppression), meaning they are not
end-to-end and consume additional computational resources.

To address these issues, we propose a transformer-based end-
to-end hotspot detector driven by a GPU-accelerated lithography
simulator. As shown in Fig. 1(c), it eliminates the need for dataset-
related hyperparameters. Furthermore, the prior knowledge from
the lithography simulator is integrated into the framework, direct-
ing the model to focus on the potential hotspot areas, significantly
improving interpretability and generalization. The main contribu-
tions of this paper are summarized as follows:

• We propose an anchor-free, end-to-end transformer-based
detector for hotspot detection, eliminating the reliance on
the diverse handcrafted parameters, which can provide the
possibility for other deep learning-based hotspot detectors.

• We integrate prior knowledge from the lithography simula-
tor into the framework, guiding the model to detect poten-
tial hotspot regions instead of identifying a hotspot pattern
already seen and improving the interpretability and general-
ization.

• We design a query initialization module and a feature ag-
gregation module based on a transformer decoder, which
effectively enhances the model’s ability to combine the fea-
tures of the hotspot in the layout and prior knowledge from
the lithography simulator.

2 Preliminary
In the chip manufacturing process, all patterns must be transferred
onto the silicon wafer through steps such as photolithography.
However, due to various physical variations during the manufac-
turing process, some patterns may experience deviations, resulting
in defects. These defects can cause failures in the circuitry, thereby
affecting the chip’s functionality. The design areas that are prone
to failure due to process variations during photolithography are
referred to as hotspots.

In our work, different from [1] and [2], we approach hotspot
detection as both a classification and localization task, rather than a
simple binary classification problem. In this task, we not only need
to care about whether the input image is hotspot or non-hotspot,
but also focus on the specific location of the hotspot. Therefore,
we do not adopt the original classification evaluation metrics such
as Accuracy(Acc), but instead use the more reasonable Average
Precision(AP) and Recall as the evaluation metrics for hotspot de-
tection. The following definitions and metrics are used to evaluate
the performance of the hotspot detector.

Definition 1 (Average Precision). The ratio of the number of
correctly predicted hotspot regions by the hotspot detector to the
total number of predicted hotspot regions by the hotspot detector.

Definition 2 (Recall). The ratio of the number of correctly pre-
dicted hotspot regions by the hotspot detector to the total number
of ground-truth hotspot regions.

As the Average Precision(AP) increases, the number of false
alarms(false positives), where non-hotspots are incorrectly pre-
dicted as hotspots, decreases. As the Recall increases, the number
of missed hotspots (false negatives) decreases.

To match the evaluation metrics above, our hotspot detection
problem is formulated as follows.



When Transformer Meets Layout Hotspot: An End-to-End Transformer-based Detector with Prior Lithography GLSVLSI ’25, June 30–July 02, 2025, New Orleans, LA, USA

Input Layout

Backbone
Q

u
er

y
 I

n
it

ia
li

za
ti

o
n
 M

o
d

el

T
ra

n
sf

o
rm

er
-B

es
ed

 D
ec

o
d

er

F
F

N

Transformer-Based Encoder

Conv+ReLu

Max Pooling

Upsample

Pretrained Litho Simulator

Detection output

Mask Image Printed Image

Multi Head Self-Attention

Layer Norm

FFN

Layer Norm

Skip Connection

Unet-based Network

Position EmbeddingPosition Embedding

Image FeatureImage Feature

Object QueryObject Query

Position Embedding

Image Feature

Object Query

Figure 2: The framework of our proposed model. The framework consists of two main parts: i) a priori lithography simulator.
ii) a transformer-based object detector. The detector includes the backbone, transformer encoder, transformer decoder and
feed-forward networks (FFN).

Problem 1 (Hotspot Detection). Given a collection of clips con-
taining hotspot layout patterns, the goal of hotspot detection is
to train a detector to classify and locate all the hotspots, thereby
maximizing the Average Precision and Recall.

3 Methodology
3.1 Overview
We design an anchor-free, transformer-based end-to-end hotspot
detector with prior lithography. As shown in Fig. 2, the proposed
framework includes three key components: i) a transformer-based
object detector, ii) a pretrained lithography simulator, iii) a feature
aggregation module based on a transformer decoder. The feature
aggregation module enables the model to better combine layout
features with prior knowledge obtained by lithography simula-
tion for metrics, which improves the accuracy of hotspot detection
by embedding hotspot-prone regions into object queries. At the
same time, the model eliminates the need for hyperparameters and
post-processing, thus simplifying the architecture and improving
scalability.

3.2 Object Detector
3.2.1 Backbone. The backbone of our model is the ResNet50 [9]
architecture, which effectively extracts features from the input lay-
out images. It processes the input layout images 𝑥𝑖𝑚𝑔 ∈ R3×𝐻0×𝑊0

to generate feature maps 𝑓 ∈ R𝐶×𝐻×𝑊 , learning the 2D represen-
tations of the input. The extracted features are then flattened and
passed to the transformer encoder to capture global dependencies,
thereby facilitating accurate hotspot detection.

3.2.2 Transformer-Based Encoder. In our model, the Transformer
Encoder plays a critical role in capturing the global dependencies
and spatial relationships inherent in layout patterns for hotspot
detection. Initially, we apply a 1x1 convolution to the high-level
activationmap 𝑓 from the ResNet50 backbone, reducing the channel
dimension from 𝐶 to a smaller dimension 𝑑 , creating a new feature
map 𝑧0 ∈ R𝑑×𝐻×𝑊 . Since the encoder expects a sequence as input,
we flatten the spatial dimensions of 𝑧0 into a 𝑑 × 𝐻𝑊 sequence,
transforming the feature map into a sequence of 𝑑-dimensional
vectors that can be processed by the transformer.

Each layer of the Transformer Encoder consists of a multi-head
self-attention module and a feed-forward network (FFN). The multi-
head self-attention mechanism enables the model to capture both
local and global context by attending to different parts of the layout
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simultaneously, which is essential for identifying hotspots that may
not be immediately adjacent but are contextually significant across
the entire layout. To handle spatial information, we supplement the
encoder with fixed positional encodings, which are added to the
input of each attention layer. These positional encodings ensure
that spatial relationships are incorporated into the self-attention
mechanism, allowing themodel to understand the layout’s structure
and pinpoint potential hotspot regions accurately.

The encoder processes the feature sequence in parallel, enabling
efficient computation while preserving the ability to detect complex,
multi-scale hotspot patterns. The output from the encoder, enriched
with both local features and global context, is then passed to the
decoder for the final detection of hotspots.

3.2.3 Transformer Decoder. The feature aggregation module based
on the transformer decoder in our model leverages the integra-
tion of lithography simulation priors to enhance hotspot detection
accuracy. Different from [5], [7], the decoder processes 𝑁 object
queries in parallel at each layer, effectively transforming these
learnable positional embeddings into predictions for hotspot loca-
tions and classifications. The integration of lithography simulation
data ensures that the object queries are guided by domain-specific
knowledge, focusing on regions most likely to be hotspots.

As shown in Fig. 3, each decoder layer consists of two key com-
ponents, including the Self-Attention Module and the Encoder-
Decoder Attention Module. The Self-Attention Module allows ob-
ject queries to reason about pairwise relationships and dependen-
cies among potential hotspots, ensuring that the model captures
the spatial and contextual relationships between different regions.

The Encoder-Decoder AttentionModule allows the object queries
to focus on the global features extracted by the encoder, seamlessly
integrating the rich information about the layout and hotspot-prone
areas provided by the lithography simulator.

The learnable object queries, enhanced by the lithography sim-
ulator, are added to the input of each attention layer, ensuring
that the decoder maintains spatial awareness and context. The
decoder’s output embeddings are independently passed through
a feed-forward network (FFN), which predicts the bounding box
coordinates and class labels for each hotspot, resulting in 𝑁 final
predictions.

3.2.4 Feed-Forward Network (FFN). In our model, the FFN con-
sists of a 3-layer perceptron with ReLU activation and a hidden
dimension of size 𝑑 , followed by a linear projection layer. The FFN
predicts the center coordinates, height, and width of each bounding
box, while the linear layer outputs the class label using softmax.

3.3 Prior Lithography Simulator
Hotspot detection is mainly used to identify and detect chip design
areas prone to manufacturing problems and operational problems.
There are many kinds of hotspots, including those caused by insuf-
ficient lithography processes. Traditional lithography simulation
methods are too time-consuming. To better enhance the accuracy
and interpretability of hotspot detection, we use a GPU-accelerated
inverse lithography algorithm, NeuralILT[10]. It provides prior
information about potentially sensitive hotspot locations to the de-
tector while also considering computational efficiency. NeuralILT
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Figure 3: Illustration of the Transformer-Based Decoder.

is an end-to-end mask optimization model with a UNet, which the
corresponding mask according to the input layout. Lithography
Simulation uses optical projection and photoresist model to convert
mask 𝑀 into photoresist image 𝑍 . After obtaining the mask pre-
dicted by NeuralILT, the corresponding aerial image 𝐼 and printed
image 𝑍 are obtained through lithography Simulation. The former
represents the distribution of light intensity on the wafer, and the
latter represents the image on the wafer after lithography. The
process of lithography simulation can be derived by using Hopkins
diffraction theory [11]:

𝐼 = 𝑈 (𝑀) =
𝐾∑︁
𝑘=1

𝜇𝑘 |ℎ𝑘 ⊗ 𝑀 |2 (1)

where ℎ𝑘 is the 𝑘th optical kernel function and 𝜇𝑘 is the corre-
sponding weight. The notation ⊗ stands for convolution operation,
which computes the squared modulus of each element.

𝑍 (𝑥,𝑦) = 𝜎𝑧 (𝐼 (𝑥,𝑦)) =
1

1 + 𝑒 (−𝛼 (𝐼 (𝑥,𝑦)−𝐼𝑡ℎ ) )
(2)

where 𝑙𝑡ℎ is the intensity threshold, 𝛼 is a constant number that con-
trols the steepness of the function and (𝑥,𝑦) represents a coordinate
on the aerial or resist image.

In general, by introducing NeuralILT and lithography simulation,
we can get the printed image of the layout. By detecting the defor-
mation of the printed image and the difference between the printed
image and the layout, the information on the lithographic defects
can be well integrated into our hot spot detection framework.
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3.4 Query Initialization Module
The Query Initialization Module is a critical component in inte-
grating lithography simulation priors into the object detector for
hotspot detection. By dividing the input layout image and litho-
graphic print image into non-overlapping blocks, the module com-
putes a metric loss for each block to quantify lithographic discrepan-
cies. Specifically, the metric loss is utilized to measure the difference
between the two images, producing a loss map that highlights criti-
cal regions.

First, the pixel-wise difference for a block 𝐵(𝑖, 𝑗) is computed as:

𝐷 (𝑖, 𝑗, 𝑥,𝑦) = 𝐼input (𝑝) − 𝐼print (𝑝), 𝑝 ∈ 𝐵(𝑖, 𝑗), (3)

𝑝 = (𝑖𝑁 + 𝑥, 𝑗𝑁 + 𝑦) (4)
where 𝑁 is the size of the block, 𝑖 and 𝑗 are the block indices
along the height and width of the image, 𝑝 represents the pixel
coordinates, 𝐼input (𝑝) and 𝐼print (𝑝) represent the pixel intensity at
position 𝑝 in the input layout image and lithographic print image,
respectively.

Then, the metric loss for each block is computed as:

𝐿metric (𝑖, 𝑗) =
𝑁−1∑︁
𝑥=0

𝑁−1∑︁
𝑦=0

𝐷 (𝑖, 𝑗, 𝑥,𝑦)2 (5)

where 𝐿metric (𝑖, 𝑗) represents the metric-based loss for the block
located at (𝑖, 𝑗).

Finally, the loss map is constructed as:

𝐿metric
map = {𝐿metric (𝑖, 𝑗) | 0 ≤ 𝑖 <

𝐻

𝑁
, 0 ≤ 𝑗 <

𝑊

𝑁
} (6)

where 𝐻 and𝑊 are the height and width of the image.
The blocks with the highest losses from 𝐿metric

map , typically the top
𝑘 , are selected as potential hotspots, and their positional informa-
tion is preserved. This positional prior is subsequently integrated
into the transformer decoder, directing the model’s attention to
regions with pronounced lithographic discrepancies, thereby im-
proving both the precision and efficiency of hotspot detection.

3.5 Loss Function
The total loss function used to train our proposed model consists
of three components: the matching loss, the classification loss and
the bounding box regression loss. Unlike traditional anchor-based
methods, our proposed framework performs one-to-one matching
between predicted boxes and ground truth objects, thus eliminating
redundant candidate boxes. Specifically, we employ the Hungarian
algorithm to find the optimal assignment that minimizes the global
matching cost between predicted and ground truth objects.

Let𝑦𝑖 denote the ground truth set, and𝑦𝜎 (𝑖 ) denote the predicted
set (where 𝜎 is the matching permutation). The matching loss is
defined as follows[12]:

𝜎̂ = arg min
𝜎∈𝑆𝑛

𝑛∑︁
𝑖=1

Lmatch (𝑦𝑖 , 𝑦𝜎 (𝑖 ) ) (7)

where Lmatch represents the matching loss, measuring the similar-
ity between predicted and ground truth boxes, and 𝑆𝑛 denotes all
possible matching permutations.

For the classification loss, we employ themulti-class cross-entropy
loss for hotspot classification. For each predicted bounding box, we

compute the probability of the hotspot and supervise it using the
ground truth label. The classification loss is defined as:

L𝑐𝑙𝑠 (𝑦𝑖 , 𝑦𝜎 (𝑖 ) ) = −
𝐶∑︁
𝑐=1

𝑝𝑐 log(𝑝𝜎 (𝑖 ),𝑐 ) (8)

where 𝑝𝑐 is the one-hot encoding of the ground truth class, 𝑝𝜎 (𝑖 ),𝑐 is
the predicted class probability, and 𝐶 is the total number of classes.

For the bounding box regression, we employ both L1 loss and
Generalized IoU (GIoU) loss to ensure tight alignment between the
predicted and ground truth boxes[13]:

L𝑏𝑜𝑥 (𝑦𝑖 , 𝑦𝜎 (𝑖 ) ) = 𝜆𝐿1L𝐿1 (𝑦𝑖 , 𝑦𝜎 (𝑖 ) ) +𝜆𝐺𝐼𝑜𝑈L𝐺𝐼𝑜𝑈 (𝑦𝑖 , 𝑦𝜎 (𝑖 ) ) (9)

L𝐿1 (𝑦𝑖 , 𝑦𝜎 (𝑖 ) ) =
∑︁

𝑗∈{𝑥,𝑦,𝑤,ℎ}
|𝑏𝑖, 𝑗 − 𝑏𝜎 (𝑖 ), 𝑗 | (10)

L𝐺𝐼𝑜𝑈 (𝑦𝑖 , 𝑦𝜎 (𝑖 ) ) = 1 −
|𝑏𝑖 ∩ 𝑏𝜎 (𝑖 ) |
|𝑏𝑖 ∪ 𝑏𝜎 (𝑖 ) |

+
|𝐶 − (𝑏𝑖 ∪ 𝑏𝜎 (𝑖 ) ) |

|𝐶 | (11)

where 𝑏𝑖 and 𝑏𝜎 (𝑖 ) represent the ground truth and predicted box
coordinates for the respective dimension 𝑗 , 𝐶 is the smallest en-
closing box containing both 𝑏𝑖 and 𝑏𝜎 (𝑖 ) , ensuring that the loss
penalizes poor localization even when IoU is the same.

The final total loss in our model is computed as the weighted
sum of the classification and bounding box losses, given by:

L𝑡𝑜𝑡𝑎𝑙 =
𝑛∑︁
𝑖=1

[
L𝑐𝑙𝑠 (𝑦𝑖 , 𝑦𝜎 (𝑖 ) ) + 𝜆𝑏𝑜𝑥L𝑏𝑜𝑥 (𝑦𝑖 , 𝑦𝜎 (𝑖 ) )

]
(12)

where 𝜆𝑏𝑜𝑥 is a hyperparameter used to balance the contribution
of L𝑏𝑜𝑥 and L𝑐𝑙𝑠 in the total loss function.

4 Experimental Results
Our experimental framework is implemented using PyTorch, with
all models trained on 8 NVIDIA GeForce RTX A6000 GPUs (48 GB
memory) for accelerated computation. We evaluate our framework
using the ICCAD2016 Benchmarks, which include four designs
adjusted to comply with EUV metal layer design rules. Based on
results obtained from an industrial-grade 7nm EUV lithography sim-
ulation, hotspots are accurately detected. Since the first benchmark
design contains only a limited number of lithography-identified
defects, our experiments focus on the remaining three designs.

Since the size of each layout is very large, we focused only on
the areas with hotspots. Small fragments of the hotspots and their
surrounding regions are cropped and then fed into our model as
part of our dataset. Each clipped sample is of dimension 1024 ×
1024, corresponding to a physical size of 1024nm × 1024nm. The
ground-truth hotspot area size is 200 × 200, corresponding to a
physical size of 200nm × 200nm. In this process, both the train set
and the test set are randomly selected, with a ratio of 8:2. More
details are shown in Table 1.

In this experiment, we did not adopt the usual evaluation metrics
such as Acc used in previous works. Acc is suitable for classification
tasks, but in detection tasks like ICCAD2016, where the data has
an imbalanced class distribution, it does not reasonably reflect the
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Table 1: Benchmark Information

Benchmark of Source Layouts Layout size(𝑛𝑚 × 𝑛𝑚) of Hotspots of Clips Clip size(𝑛𝑚 × 𝑛𝑚) Image Size(𝑝𝑖𝑥𝑒𝑙𝑠)#Train #Test

ICCAD2016-2 1 6950×7000 79 40 10 1024×1024 1024×1024
ICCAD2016-3 1 12915×20144 2821 2211 553 1024×1024 1024×1024
ICCAD2016-4 1 79952×84266 162 118 29 1024×1024 1024×1024

Figure 4: Comparison with Generic Object Detection methods.

Table 2: Comparison with the state-of-the-art methods.

Benchmark R-HSD[5] DETR[14] Ours

AP(%) Recall(%) AP(%) Recall(%) AP(%) Recall(%)

ICCAD2016-2 61.3 76.8 72.5 95.9 73.8 96.5
ICCAD2016-3 45.1 57.6 92.6 98.0 95.4 98.1
ICCAD2016-4 37.7 84.6 35.7 85.2 40.7 89.8

Avervage 48.00 73.00 66.93 93.03 69.97 94.8

performance of hotspot detection. To more accurately and compre-
hensively assess the model’s performance, we chose AP and Recall
as the primary evaluation metrics.

Figure 4 shows the comparison results between our model and
generic object detection models on the ICCAD2016 dataset. Experi-
mental results indicate that anchor-based object detection frame-
works, such as Faster R-CNN[8] and YOLOv3[15], involve a substan-
tial number of hyperparameters, which leads to poor performance.
In contrast, anchor-free detectors like FCOS[16] and CenterNet[17]
eliminate the need for predefined anchor configurations but still
necessitate NMS for post-processing, which requires additional
parameter tuning. Furthermore, YOLOv10[18] removes the NMS
post-processing step in addition to eliminating the need for prede-
fined anchor configurations. However, the lack of prior knowledge
integration limits the model’s overall performance on hotspot de-
tection.

Table 2 presents the comparison results between our model
and previous state-of-the-art hotspot detection models on the IC-
CAD2016 dataset. R-HSD shows the results of the region-based
hotspot detector in [5], which was the first to propose a detector
capable of detecting multiple large hotspots in each inference. The
results show that our model improves by 3.04% in AP and 1.77% in
recall compared to DETR, and by 21.97% in AP and 21.80% in recall
compared to R-HSD, proving the advancement of our model.

Compared to both generic detection models and previous state-
of-the-art hotspot detection models, both AP and Recall show sig-
nificant improvements, indicating that our model not only achieves
higher detection accuracy but also reduces false alarms in non-
hotspot areas and minimizes missed detections in hotspot areas.

Conclusion
In this paper, we propose an anchor-free, end-to-end transformer-
based hotspot detector that no longer relies on anchor boxes or
region proposals, eliminating the need for the manual setting of nu-
merous sensitive hyperparameters. This allows the model to focus
directly on identifying potential hotspot regions. To better align
with the hotspots that may appear in real-world processes, we inte-
grate photolithography prior knowledge into the hotspot detector.
We also introduce a query initialization module and a transformer
decoder-based feature aggregation module to effectively integrate
layout features and lithography prior knowledge. We hope this
work can provide the possibility for advanced hotspot detectors for
manufacturability research in the future.
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