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Abstract: The conventional phase-generated carrier (PGC) demodulation algorithm is often
susceptible to three major disturbances in practical distributed fiber sensing applications, namely
modulation depth, carrier phase delay, and laser intensity disturbance. These disturbances
significantly render the ®-OTDR system less capable of achieving high-accuracy vibration
sensing under complex environmental conditions. To address these limitations, this study
proposes a high-performance PGC demodulation algorithm based on multi-carrier mixing
(PGC-MCM). By establishing mathematical logic operations between multiple mixed carrier
signals and the intrinsic interference signal, the proposed method enables accurate reconstruction
of the measured phase signal while effectively suppressing the influence of the aforementioned
disturbances. Experimental results verify that the algorithm can precisely demodulate vibration
signals with varying frequencies and amplitudes at different locations along the sensing fiber,
achieving high fidelity recovery of the original signal. The proposed approach demonstrates
excellent linearity and noise immunity. It yields a total harmonic distortion (THD) of —66.32 dB,
a signal-to-noise and distortion ratio (SINAD) of 54.74 dB, with an amplitude error rate (Reyor)-
as low as 0.46%, highlighting its strong potential for high-accuracy distributed optical fiber
sensing applications.

© 2026 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The phase-sensitive optical time-domain reflectometer (O-OTDR) enables precise monitoring
of external vibration events by detecting phase variations in the Rayleigh backscattered light
(RBS) within the sensing fiber [1-3]. Owing to its high sensitivity and fully distributed capability,
®-OTDR has been widely applied in diverse fields including oil and gas pipeline protection [4,5],
perimeter security [6,7], and railway condition monitoring [8,9].

At present, several phase demodulation algorithms—such as quadrature (I/Q) demodulation
[10,11], 3x3 coupler demodulation [12-14], and PGC demodulation [15,16]—have been
widely applied in ®-OTDR system. Among these techniques, the PGC demodulation method
has become one of the preferred approaches for phase retrieval due to its high sensitivity,
wide dynamic range, and excellent linearity [17]. However, in practical implementations, the
conventional PGC algorithm is limited by various non-ideal disturbances [18,19]. The three
most significant disturbances are modulation depth (MD), carrier phase delay (CPD), and light
intensity disturbance (LID). Specifically, deviation in MD is mainly caused by variations in the
carrier signal amplitude and environmental temperature characteristics [20]; CPD arises from the
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time delay between the carrier signal and the interference signal [21]; and LID is induced by
optical source instability or environmental perturbations [22].

To mitigate the adverse effects of these three disturbances on demodulation accuracy, numerous
improved PGC algorithms have been proposed. Tong et al. proposed an improved PGC
Differential cross multiplication (PGC-DCM) algorithm by introducing a correction in the
differential cross-multiplication step [23], effectively suppressing nonlinear errors caused by
optical-intensity disturbances. Li et al. developed PGC-SCR, which achieves real-time carrier
phase compensation through synchronous carrier recovery, significantly reducing THD [24].
Building on this, Zhang and Li introduced PGC-AD-DSM, which combines asymmetric division
with differential self-multiplication [25], not only mitigating errors caused by modulation depth
drift but also further enhancing robustness against optical-intensity fluctuations. Sun et al.
proposed a differential self-division method based on PGC Arctangent (PGC-Arctan) algorithm
[26], effectively suppressing modulation depth effects and demonstrating good stability and
noise resilience. Subsequently, Xiao et al. presented an improved PGC algorithm applied to
®-OTDR system [27], which effectively suppresses both linear and nonlinear distortions induced
by modulation depth variations and carrier phase delay. Although the aforementioned studies have
demonstrated that introducing multiple carrier-mixing paths can achieve signal demodulation
while mitigating certain disturbances, few approaches are capable of simultaneously eliminating
all three types of interference. Moreover, most of these works did not clearly explain the rationale
behind the selection of specific carrier-mixing signals.

In this paper, we analyze the multi-order carrier mixing scheme and provide a theoretical
guideline for selecting the appropriate mixing orders. Based on this analysis, the optimal carrier
harmonics to be introduced are identified, and an improved demodulation algorithm is proposed.
The aim is to achieve accurate phase recovery while simultaneously suppressing the effects of
MD, CPD, and LID. This approach will significantly enhance system robustness and improve
signal reconstruction accuracy.

2. Principle

2.1. ®-OTDR system employing a PGC scheme

The basic principle of ®-OTDR is to detect the phase variations of coherent RBS induced by
numerous scattering centers within the duration of the injected optical pulse [28]. When a
PGC based unbalanced Michelson interferometer (MI) is introduced at the receiver, the RBS
signal from a vibration point along the sensing fiber is directed into the MI through a circulator
and interferes with the local carrier signal, thereby generating an interference signal whose
phase carries the sensing information. The phase of this interference swignal varies with the
external disturbances, and can be demodulated with high sensitivity through the PGC modulation
and demodulation process. The system configuration of the ®-OTDR with PGC detection is
illustrated in Fig. 1.

Assuming that the sensing fiber is composed of continuous scattering units with a length of AL
[29], each scattering unit contains i randomly distributed scattering centers whose polarization
states are identical. The backscattered optical field at a distance L; = AL can be expressed as:

Ep,(1) = EoP; exp(—aL;) exp(—i2BL;)a; expljpi(1)] (D

where E| is the electric field amplitude of the incident light, P; denotes the polarization-related
coefficient, a represents the optical power attenuation coefficient, 8 is the propagation constant,
and a; and ¢; are the reflectivity and phase of the scattering unit, respectively.

As shown in Fig. 1, the light source is a narrow-linewidth laser whose coherence length is
longer than the pulse width, ensuring that the Rayleigh backscattered lights overlapped within
one spatial resolution length can interfere with each other. When the optical field E;(¢) enters
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Fig. 1. Schematic diagram of ®-OTDR system based on PGC detection

the unbalanced MI structure, the backscattered components RB; and RB, interfere due to their
identical optical path lengths. One arm of the MI serves as a delay path with an optical path
difference of d; therefore, the interference electric field E(z) at a distance L can be expressed as:

E(r) = EL(t) + E-a(1)
= EoPp exp(—aL) - exp(—j2BL) - ar expljer(1)]

+ EgPr-q exp[—a(L — d)] - exp[—/2B(L - d)] )
~ag-q expljer(n)] - expljer-a(r) — jer(1)]
= M + Nexp[jBd + Ap(1)]

Assuming that Ag(t) = ¢r—4(t) — ¢1(t), and simplifying the coefficients M and N, the output
optical power of the interference through the MI can be expressed as:

1(t) = |[E@)|* = M? + N* + 2MN cos[Bd + Ap(t)] = A + Bcos ¢(1). 3)

A sinusoidal signal with a modulation angular frequency of w, is applied to the other arm of
the MI, introducing an additional phase modulation C cos(w,t) in Eq. (3). Accordingly, the
interference intensity can be rewritten as:

I(t) = A + B cos[C cos(w.t) + ¢(t)] (€]

where A is the direct current (DC) component, B is the alternating current (AC) component, C
denotes the modulation depth, w, represents the carrier frequency, and ¢(7) corresponds to the
measurand signal.

2.2. Basic principle of the traditional PGC demodulation algorithm

In practical conditions, both the LID and the CPD () affect the interference signal. Therefore,
by introducing these nonideal disturbances into Eq. (4), the interference signal detected by the
photodetector can be expressed as:

1(¢) = (1 + mcos wyt){A + Bcos[C cos(w.t + 0) + ¢(1)]} (5)

where m is the amplitude of the optical intensity disturbance, and w,, is its angular frequency.
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Based on the Bessel function relationship, Eq. (5) can be expanded as follows:

A + Bcos[e(1)] [JO(C) +2 3 (=1 Jn(C) cos(2k(wet + 6))
k=1

I(t) = (1 + mcos wyt)

o0 (6)
—Bsin[¢(1)] [2 3 (=1 2141(C) cos((2k + 1)(wet + 6))
k=0

where Jo(C) denotes the zero-order Bessel function, while Jy;(C) and Jyi+1(C) represent the
even-order and odd-order Bessel functions, respectively.

At this point, the interference signal is multiplied by the fundamental frequency of the carrier
signal cos(w,t) and second harmonic cos(2w,t), respectively, and then passed through a low-pass
filter, yielding the in-phase and quadrature components as follows:

Iy = LPF[I(t) - cos(w.1)] = —(1 + mcos wyt)BJ1(C) cos 0 sin ¢(f) @)

Iy = LPF[I(t) - cosQw,t)] = —(1 + m cos w,t)BJ,(C) cos 20 cos ¢(t) (8)

In the PGC-DCM algorithm, the two obtained signals are first differentiated and then cross-
multiplied; performing a subsequent differential operation yields Ip:

Ip = (1 + mcos wt)*B2J1(C)J2(C)cosbcos20’ (1) 9)

By integrating Ip, the phase ¢(f) can be obtained. It can be seen that the PGC-DCM
algorithm is influenced by the MD, CPD, and LID. The variation of the coefficient term
(1 + mcos wyt)*B2J1(C)J2(C)cosOcos28 in Iy with respect to C is shown in Fig. 2(a). The overall
absolute magnitude of the coefficient term of Ip remains much smaller than 1. However, when
the modulation depth C = 2.37 rad, the magnitude reaches its maximum. Under this condition,
the demodulation performance of the DCM algorithm is optimal, indicating that C = 2.37 rad is
the best operating point for DCM-based demodulation. Figure 2(b) illustrates the disturbances of
CPD and LID on the coefficient term of Ip when C = 2.37 rad. It is evident that the PGC-DCM
algorithm achieves its best demodulation performance only under ideal conditions. When CPD
and LID deviate from the ideal case (i.e., LID# 1 rad, 8 # kx rad, k € Z), the magnitude of the
coeflicient term in Ip decreases further.

——— =0x,LID=1rad
02F ——— O=1x/5,LID=1rad 1
#=17/3,LID=0.5rad 025+
0.15 F 6=3r/5,L1D=0.5rad | { /

Amplitude(rad)

0 2 4 6 8 10 ’ al 0o 0 LID
Modulation depth C

Fig. 2. The influence of non-ideal disturbances on the PGC-DCM

In the PGC-Arctan algorithm, the two extracted signals are divided, and the resulting signal

can be expressed as I4:
J1(C)cos @
Iy = ————t t 10
4 Jo(C) cos 20 an () (10)
By applying the arctangent operation to 4, the phase ¢(#) can be obtained. It can be seen

that the PGC-Arctan algorithm is affected by both the MD and the CPD. Figure 3(a) shows that
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only for specific values, such as C = 2.63 rad, can the PGC-Arctan algorithm eliminate the
influence of MD. The variation of the coefficient term J;(C) cos 6/J,(C) cos 26 in I4 with respect
to C is illustrated in Fig. 3(b). As shown in Fig. 3(b), changes in CPD alter the effective MD,
making it more difficult for the absolute magnitude of the coefficient term of I4 to remain near
1. This further limits the ability of the PGC-Arctan algorithm to achieve ideal demodulation
performance.
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Fig. 3. The influence of non-ideal disturbances on the PGC-Arctan.

2.3. Disturbances suppression via multi-order carrier mixing

First, the basic principle of the multi-carrier mixing method is that, during demodulation of the
interference signal detected by the photodetector, the signal is mixed with the k-th harmonic of
the carrier and then low-pass filtered to extract the k-th order component. This process retains the
baseband term that is related to ¢(). Therefore, the coefficients in the expression of the signal
obtained after the k-th mixing and low-pass filtering primarily originate from the Bessel function
term Ji(C).

Considering that () is much smaller compared with the carrier signal, the result obtained
after mixing the interference signal with the k-th harmonic of the carrier cos(kw,t), followed by
low-pass filtering, can be approximated as:

Si(t) = B - Ji(C) - Ti(0) - o(t) + m - B - Ji(C) - Ax(0, wy, 1) + ny(1) (11)

where T, and A, are constant coefficients determined by the CPD 6, and n(f) denotes the
projection of measurement noise onto this channel, including optical noise, electronic noise,
etc. In the above expression, the first term contains the information to be measured, i.e., the
useful signal component, whose amplitude is proportional to J;(C). The second term is the
cross-interference component produced by the interaction between optical-intensity disturbance
and the carrier, which may be projected onto the baseband after mixing or filtering.

Since the amplitude of the information term is proportional to J;(C), the signal energy in the
k-th channel is approximately ocJ;(C)?. Assuming that the noise power in different channels
remains approximately equal, the Carrier to Noise Ratio (CNR) of the k-th channel can be
expressed as:

. (B-J(O) - Tu(6))

oy

CNRy o Ji(C)? (12)

where B, I, and o> can be regarded as constants that show no strong dependence on k.
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For a fixed modulation depth C, the variation of the Bessel function term J(C) with respect to
k can be approximated as:

(c/2)*
] (13)

It can be seen that J;(C) decays rapidly with increasing k (factorial-level decay). Therefore,
as the carrier harmonic order k increases, the signal energy of the information term in a single
channel exhibits factorial attenuation, causing the corresponding CNRy to drop rapidly and
become unusable, which severely degrades demodulation performance.

The approximate expression for each channel described in Eq. (11) can be linearly represented
as:

Ji(C) =

Sk(t) = ay - o) + by -m+ ci - 60 + di - 6C + m(¢) (14)

here, the coefficient a; oc Ji(C), while by, ci, diis related to Ji(C) and 6, and also decays rapidly
as k increases.

Assuming that the first k£ mixing channels Si,..., S are used simultaneously to solve for
certain parameters in x = [¢(¢), m, 6, C]” while eliminating the influence of other parameters, the
above expression can be rewritten in matrix form as:

aq b] C1 d] ®
ar b2 Cc2 dz m
S0 =Hx(+n(, H=| = |, x= (15)
. . . . 50
ay bk Ck dk oC

where H is a k X p coefficient matrix, and p is the number of unknowns, which equals 4. To
estimate ¢(f) while suppressing the remaining terms using least squares or a pseudo-inverse, the
solution is generally expressed as:

X =(H"H)"'H"S (16)

The noise amplification is determined by the norm of (HTH)~!. Because the first column
of H is distributed on the order of J;(C), the column scaling becomes inconsistent (large for
low-order terms and extremely small for high-order terms). As a result, the condition number of
H increases significantly, and (HTH)~! greatly amplifies noise and estimation errors, leading to
substantial estimation errors in @.

In addition, we investigate the lower bound on introducing multiple harmonic carriers. For the
interference signal expression described in Eq. (5), several terms can be redefined as follows:

U(t) = (1 + mcos wyt) 17)

O(f) = wet + 6 (18)

Applying the Jacobi—Anger expansion to the cosine term in Eq. (5) (retaining only the dominant
Oth-, 1st-, and 2nd-order terms) yields:

cos(Ccos®@(t) + ¢(t)) = Jo(C)cosp(t) — 2J1(C)sing(t)cosD(t)

= 2J5(C)cosp(t)cos2®(t) + - - - (19)

Substituting the above expression into Eq. (5), then mixing the interference signal with the
fundamental cosine carrier, the fundamental sine carrier, the second-harmonic cosine carrier,
and the second-harmonic sine carrier, followed by low-pass filtering, we obtain:
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First-order baseband components:

Ly = LPF{I(t) cos(w¢t)} = M(t)B(—J1(C) sin ¢(t)) cos 8 (20)
Q1 = LPF{I(1) sin(wct)} = M(1)B(—J1(C) sin (1)) sin 6 2D
Second-order baseband components:
I, = LPF{I(t) cosRuwt)} = M(t)B(—J>(C) cos ¢(t)) cos 26 (22)
Q> = LPF{I(?) sinw,t)} = M()B(—J2(C) cos ¢(t)) sin 20 (23)

Furthermore, to generalize the above analysis to arbitrary harmonic order, we start again from
Eq. (5), and omitting the DC component, we let Ji(-)denote the k-th-order Bessel function. When
the interference signal is mixed with the k-th harmonic of the carrier and its corresponding sine
term, and then passed through a low-pass filter, the baseband in-phase and quadrature components
can be written in the unified form

Ii(t) = LPF{I(t) cos(kw.t)} = —M(t)BJ(C)[1(¢(2)) cos(kB) 24)

Ok(t) = LPF{I(1) sin(kw.t)} = —M(t)BJ(C)[k(p(1)) sin(kH) (25)

where I'x(¢(2))is a phase function determined by the parity of k: I'x(¢(7)) = sin[¢(¢)]. when kis
odd, and TI'y(¢(t)) = cos[¢(#)] when k is even. Thus, for any k, the magnitude of the baseband

vector is given by
Ri(1) = (1) + 03(1) = M(NBIJL(C)|Tel(¢ ()] (26)

Now consider sampling the same spatial position at N discrete time instants t;(i = 1, ..., N).
Suppose that only two harmonic orders k = p and k = g are used (for example p = 1, g =2or
p =1, g =73). Ateach instant, the observable sideband magnitudes consist of the two sequences
R,(;) and R,(#;), yielding 2N scalar samples. In addition, the I-Q phase relationship, i.e., the
direction of the vector {I(¢), Qx(¢)}, can provide at most one global angular constraint on the
carrier phase delay 8. Hence, the total number of independent observables is Nyps = 2N + 1. By
contrast, the true unknowns of the system include the instantaneous quantities M(¢;) and ¢(z;) at
each time instant (a total of 2NV degrees of freedom), as well as the two global variables Cand 6, so
that Ny,x = 2N + 2. Clearly, Nops — Nunk = —1, which means that the system is underdetermined
and a unique solution cannot be obtained.

A special case arises when both pand gare odd (for example p = 1, ¢ = 3). In this case,
[[e(t)] = Tyle(1)] = sin[¢(7)], and therefore the two magnitude sequences satisty

Ry(t) _ 9(©)
R0~ 3,(0)

27

In other words, the second sequence does not provide any new time-varying information; it
only supplies a constant ratio determined by C. Algebraically, the observation equations can
constrain only the overall scale of M(¢)sin[¢(¢)] and this constant ratio. Thus, the three quantities
M(t), ¢(t), and Ccannot be uniquely separated using only these two equations.

Only when the harmonic orders pand ghave different parity (for example p = 1, g = 2) do
the two magnitude sequences respectively contain sin[¢(#)] and cos[¢(?)], thereby forming an
orthogonal basis with respect to ¢(¢). In this case, after eliminating the global constant term (or
cancelling M(¢) by taking an appropriate ratio), there remains a residual coupling associated
with the modulation depth C. Consequently, a third independent observation or suitable prior
information is still required to completely remove the dependence on C.

In summary, we conclude that to eliminate the influence of the three typical disturbances (MD,
CPD, and LID) while achieving accurate signal demodulation, introducing third-harmonic carrier
mixing is the critical and optimal choice.
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2.4. Theory of the PGC-MCM algorithm

Based on the above theory, this work proposes a PGC-MCM algorithm with third-harmonic
carrier mixing. Figure 4 illustrates the principle of the PGC-MCM algorithm.
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Fig. 4. PGC-MCM demodulation algorithm schematic diagram

The interference signal I(¢) is multiplied by cos(w,t), sin(w,t), cos(w,t), sin(2w,t), cos(3w,t),
sin(3w,t) to obtain six mixed signals, which are then passed through low-pass filters to remove
higher-order harmonic components, yielding Ly(¢) through Le(?).

Lo(t) = LPF[I(t)] = (1 + mcos w,t)BJy(C) cos ¢(f)

Li(t) = LPF[I(t) sin w.t] = —(1 + mcos w,t)BJ(C) sin 0 sin ¢(t)

Ly(t) = LPF[I(t) cos w.t] = —(1 + m cos w,t)BJ1(C) cos 6 sin ¢(t)

L3(t) = LPF[I(t) sin 2w.t] = —(1 + m cos w,t)BJ>(C) sin 26 cos ¢(t) (28)
Ly(t) = LPF[I(t) cos 2w,t] = —(1 + mcos w,t)BJ>(C) cos 20 cos ¢(f)

Ls(t) = LPF[I(t) sin 3w.t] = —(1 + m cos wyt)BJ3(C) sin 36 sin ¢(t)

L¢(t) = LPF[I(t) cos 3w,t] = —(1 + mcos wyt)BJ3(C) cos 30 sin ¢(t)

Next, exploiting the orthogonal phase properties of sine and cosine, L; () and L,(¢) are squared,
summed, and square-rooted to eliminate the carrier phase delay, producing P;(z) . The same
procedure is applied to L3(¢) and Ly(t), as well as Ls(f) and Le(f), yielding P»(¢) and P;(%),

respectively.
Pi(1) = \JLA(1) + L2(t) = (1 + mcos w,1)BJ1(C) sin ¢(r)
Py(1) = \JLA(1) + L3(1) = (1 + mcos w,1)BJ»(C) cos ¢(1) (29)

Ps(t) = /Lg(t) + Lé(t) = (1 + mcos w,1)BJ3(C) sin (1)

Summing P (¢) and P3(¢) and differentiating with respect to time ¢ gives D (¢). Summing Lo()
and P;(¢) yields D;(t), and differentiating P (¢) with respect to ¢ produces D3(t).

d[P(1) + P5(1)]
dt
Dy (1) = Lo(t) + P2(t) = (1 + mcos wyt)B[Jo(C) + J2(C)] cos ¢(t) 31

D(1) = = (1 +mcos wu1)B[J1(C) + J3(C)] cos p(t)¢’ (1) (30)
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d[P
Ds(1) = % = (1 + mcos w,1)BJ1(C) cos ()¢’ () (32)
Using the recurrence properties of Bessel functions:
2kJ (C
S (©) 4 Jiar(€) = 2E) (33)
Equations (30) and (31) can be transformed as follows:
4BJ,(C "(H(1
Ri(1) = 2(C) cos go(t)goc(t)( + mcos wyt) 34)
2BJ(C 1
Ro(1) = 1(C) cos 1,0(2( + mcos wyt) (35)
Dividing R, () by R»(¢) gives:
JZ(C) ’
1) =2—=¢'(t 36
0i() =23 ¢ (36)
Dividing D3(t) by P,(¢) gives:
S (C) ,
= —= 37
0:() = T 560 (37)

At this stage, Q(¢) and Q(f) no longer contain the optical-intensity AC component B or the
LID term, thereby eliminating the influence of LID on the demodulation results. Multiplying
Q1 (t) and Q5 (t), and then dividing by 2 yields:

Z(1) = [¢' (O] (38)

Finally, through square-rooting, integration, and high-pass filtering, the target phase signal ()
can be obtained. In addition, to mitigate numerical instability caused by zero-valued samples
during the computation, we incorporate a constant-bias compensation in the implementation,
thereby further improving the robustness of the algorithm.

Based on this principle, the demodulated result of the improved algorithm contains only the
target signal, and is no longer a function of the DC/AC components of the interference signal, MD,
CPD, or LID. This effectively avoids demodulation distortion caused by the three aforementioned
disturbances, achieving accurate and robust demodulation performance.

3. Simulation and comparison

To fully demonstrate the demodulation performance of the proposed algorithm, this section
validates the PGC-MCM algorithm through simulations and compares it with conventional PGC
algorithms. The basic simulation parameters are set as follows: the DC/AC amplitude of the
interference signal is 1 rad; the modulation frequency of the carrier signal is 1 MHz; the vibration
signal is a cosine wave with an amplitude of 10rad and a frequency of 2 kHz; and the sampling
rate is 16 Ms/s.

Simulations are performed using two typical modulation depths, 2.37 rad and 2.63 rad, two
carrier phase delays, & = 0 and 6 = 3x/5, and two light-intensity disturbance frequencies,
wy = 20Hz and w,, = 200Hz. The combinations of MD, CPD, and LID in Fig. 5 are deliberately
chosen to span from nearly ideal to strongly disturbed conditions, so that the performance
differences among the algorithms can be clearly demonstrated. The resulting time-domain
waveforms are shown in Fig. 5(a)-(f). Comparing Fig. 5(a)-(d), it can be seen that the PGC-
Arctan and PGC-DCM algorithms exhibit varying degrees of amplitude distortion and waveform
deformation when deviating from their respective optimal modulation depths. This distortion
becomes more pronounced in the presence of carrier phase delay. In contrast, the proposed
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PGC-MCM algorithm is unaffected by these two disturbances. Furthermore, combining Fig. 5(a),
(e) and (f), it is evident that the PGC-DCM algorithm is significantly influenced by optical-
intensity disturbance, resulting in severe waveform distortion in the time domain. In contrast,
the PGC-MCM algorithm remains unaffected, providing stable and reliable demodulation that
accurately restores the original signal.

= PGC-MCM PGC-Arctan — PGC-DCM = Origin signal

C=237rad, 8=0 C=2.37rad, 8 =3n/5

(a) ®) ke

Amplitude(rad)
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Time (ms) : Time (ms)

Fig. 5. Demodulation results under different modulation depths, carrier phase delays and
light intensity disturbances.

Here, we present the power spectral density (PSD) plots corresponding to Fig. 5(a) and (d),
as shown in Fig. 6. It can be seen that under non-ideal conditions, the PGC-Arctan algorithm
generates a significant number of harmonics. The PGC-DCM algorithm exhibits an overall lower
spectral amplitude, which corresponds to the amplitude distortion observed in the time-domain
signals in Fig. 5. In contrast, the proposed PGC-MCM algorithm is largely unaffected by these
non-ideal disturbances, maintaining a stable and consistent performance.

Further simulations were conducted considering that, in practical applications, the interfero-
metric structure may be affected by environmental disturbances, making it difficult to maintain
the modulation depth at its optimal value and potentially introducing carrier phase delay. In this
study, the modulation depth C was varied from 1.0 rad to 3.5 rad in steps of 0.5 rad, the carrier
phase delay is fixed at Oz, and LID is set to 0 dB. In addition, the CPD varies from O to 2m in
steps of 7t/5, the modulation depth C is fixed at 2.63 rad, and LID is set to 0 dB. Finally, letm = 1,
the LID frequency steps from 20 Hz to 200,000 Hz in a 10-fold variation, the modulation depth C
is fixed at 2.63 rad, and the carrier phase delay is fixed at Ort. The demodulation performance
was evaluated using total harmonic distortion (THD) and signal-to-noise and distortion ratio
(SINAD). The resulting fitting results are shown in Fig. 7(a)—(f).
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Fig. 7. THD/SINAD of demodulation results under different modulation depths and carrier
phase delays. (a)(b) THD and SINAD of demodulation results at different modulation depths;
(c)(d) THD and SINAD of demodulation results under different carrier phase delays; (e)(f)
THD and SINAD of demodulation results under different light intensity disturbances.
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THD quantifies the degree of distortion by comparing the energy of harmonic components in
a signal to that of the fundamental frequency component, while SINAD evaluates the extent of
interference and distortion by comparing the energy of the fundamental component to the total
energy of noise and distortion components. As shown in Fig. 7, the demodulation performance of
the PGC-Arctan algorithm depends on both the MD and the CPD. At C # 2.63rad and 6 # 0, the
PGC-Arctan algorithm exhibits significant nonlinear distortion, with high THD and low SINAD,
resulting in poor signal quality. Even at the optimal MD, CPD can cause notable nonlinear
distortion, and the THD and SINAD achieve their best values only at 0, i, and 25t. Furthermore,
under the condition of changing the LID, the demodulated signal exhibits a certain degree of
nonlinear distortion.

In contrast, the PGC-DCM algorithm produces demodulated signals with coefficients less than
1, so the amplitude of its outputs is always lower than that of the original signal. When deviating
from the optimal MD, the PGC-DCM algorithm exhibits linear distortion but maintains relatively
low THD and high SINAD. Similarly, under varying carrier phase delays, the demodulated
signals also show linear distortion while still retaining low THD and high SINAD. Furthermore,
under the condition of changing the LID, the demodulated signal exhibits significant nonlinear
distortion. The proposed PGC-MCM algorithm, however, shows no significant distortion in the
time-domain waveform under variations in MD, CPD or LID, while maintaining low THD and
high SINAD. Specifically, compared with the PGC-Arctan algorithm at the optimal MD, the THD
of PGC-MCM algorithm is reduced by 21.1 dB, and its SINAD is improved by up to 20.5 dB
relative to PGC-DCM algorithm under optimal MD. Moreover, the overall performance remains
stable, with fluctuations within 5 dB, consistently maintaining a high level of demodulation
quality.

4. Experiments and results

The PGC-MCM algorithm was further applied to a ®-OTDR system to experimentally verify
its performance advantages. The MI-based ®-OTDR experimental setup is shown in Fig. 8. In
the experiment, a narrow-linewidth laser (NLL) at 1550.12 nm was used as the light source. An
acousto-optic modulator (AOM) generated optical pulses with widths of 90 ns at a repetition rate
of 20 kHz. The generated pulses were amplified by an erbium-doped fiber amplifier (EDFA) and
then injected into the sensing fiber through a circulator. The total length of the sensing fiber was
3070 m. Two piezoelectric transducers (PZT1 and PZT2), each consisting of coiled single-mode
fiber, were placed at 1020 m and 2010 m along the fiber to serve as vibration sources, driven
by a signal generator (SG). When a vibration occurs, the phase of the Rayleigh backscattered
(RBS) light in the sensing fiber changes. This phase-modulated light is directed through the
circulator into the MI structure, where it interferes with a high-frequency carrier signal at | MHz
and 2rad amplitudes at a 3dB fiber coupler (50:50), producing an interference signal. The
interference signal is detected by a high-sensitivity photodetector (PD) with a 70 MHz bandwidth.
The PD output is sampled by an oscilloscope at 625 Ms/s and transferred to a computer. At
specific locations along the fiber, the PGC-MCM algorithm, as illustrated in Fig. 4, is applied for
subsequent digital demodulation on the computer.

In this system, the theoretical maximum detectable distance is given by L<c/2fns, which is
set to 5km. The spatial resolution is determined by Az = ¢ - 7/2ny, and the calculation shows
that, for a pulse width of 7 = 90ns, the corresponding theoretical spatial resolution is 9 m. To
verify the spatial resolution of the system, a 2 kHz cosine signal was applied to drive PZT?2.
Figure 9 shows the vibration signal localization curve obtained after demodulation and smoothing.
By comparing the 10% and 90% points of the rising edge [30], the actual system resolution is
determined to be 9.2 m, which was in good agreement with the theoretical value.

To maintain system sensitivity, the optical path difference must be less than or equal to the
theoretical spatial resolution associated with the pulse width [31]. Therefore, the unbalanced
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Fig. 9. Vibration event location curve.

Michelson interferometer in the system was configured with an optical path difference of 9 m.
At PZT1, located at 1020 m, cosine vibration signals with a frequency of 1 kHz and amplitude
of 1rad, and a frequency of 1.5 kHz and amplitude of 2 rad, were applied. At PZT2, located at
2010 m, a continuous cosine vibration signal with a frequency of 2 kHz and amplitude of 2 rad
was applied. Figure 10 presents the time—space and frequency—space diagrams of the globally
demodulated signals at different locations in the PGC-based ®-OTDR system. Comparing
Fig. 10(a) and (b), it can be clearly seen that, under varying frequencies and amplitudes, the system
is still able to accurately identify vibration events at different positions. Furthermore, comparing
Fig. 10(c) and (d) shows that the demodulated signal frequencies match the applied vibration
signals and the frequency—space information corresponds consistently with the time—space
information.



Research Article Vol. 34, No. 2/26 Jan 2026/ Optics Express 1478 |

Optics EXPRESS N

(a)

3 i AR

Amplitude (rad)

LT .

1000 {500

0 500 2.5
20000 2500 3pgo. O

Length (m}) Time (ms) Length (m) Time (ms)

(© O i O i iy i N PP i T i s

20

Amplitude (dB)

3

500 1000

1000 500 e 1500

2000 2gpp 2000 e X
2500 2300 3000 0

s000 0

F eney (kH: re SNCY
Length (m) ToRUEICH () Length (m) Frequency (kHz)

Fig. 10. The time-space diagrams and frequency-space diagrams of two vibration events.
(a)(c) 1kHz, 1rad signals and 2kHz, 2 rad signals at different positions; (b)(d) 1.5kHz, 2 rad
signals and 2kHz, 2 rad signals at different positions.

To fully verify the superior performance of the proposed algorithm, it was compared with
conventional PGC demodulation algorithms for the vibration signal at 2010 m. First, the
demodulation performance of the PGC-DCM and PGC-Arctan algorithms at their respective
optimal working points was validated (for the DCM algorithm, the modulation depth was 2.37 rad,
CPD was 0 rad; for the Arctan algorithm, the modulation depth was 2.63 rad and CPD was 0 rad).
The resulting demodulated signals are shown in Fig. 11(a)—~(d). Subsequently, the proposed
PGC-MCM algorithm was validated under a modulation depth of 2rad and CPD was Orad,
with the results shown in Fig. 11(g). To further compare the demodulation performance of the
three algorithms under the influence of three typical disturbances and to validate the simulation
results presented in Fig. 2 and Fig. 3, two sets of interference conditions were considered: a
moderate interference scenario (modulation depth was 1.5 rad, CPD was 157x/180) and a severe
interference scenario (modulation depth was 3.5 rad, CPD was 877/180, with optical-intensity
disturbance applied). The interference signals under these conditions were demodulated using all
three algorithms. The resulting signals are shown in Fig. 11(b), (e), (h) for moderate interference
and Fig. 11(c), (f), (i) for severe interference. Comparing the results in Fig. 11, it can be concluded
that conventional PGC-DCM and PGC-Arctan algorithms exhibit varying degrees of amplitude
and waveform distortion when subjected to the three typical disturbances, resulting in unstable
demodulation performance. In contrast, the proposed PGC-MCM algorithm is unaffected by
these typical disturbances, demonstrating excellent and stable demodulation performance.

Figure 12 shows the PSD of the conventional PGC-DCM and PGC-Arctan algorithms compared
with the proposed PGC-MCM algorithm under the same parameter conditions corresponding to
Fig. 11(a), (d) and (g). It can be seen that the proposed algorithm provides stronger harmonic
suppression and better harmonic attenuation. Compared with the PGC-Arctan algorithm, the PGC-
MCM algorithm exhibits lower harmonic components, lower noise levels and more concentrated
energy in the demodulated signal. Compared with the PGC-DCM algorithm, the proposed
algorithm shows higher main peaks and greater energy. As shown in Table 1, the PGC-MCM
algorithm achieves a THD of -66.32 dB, a SINAD of 54.74 dB, and an amplitude error rate R,
of only 0.46% distortion. Compared with the PGC-Arctan algorithm, the THD is reduced by
33.10dB, SINAD is increased by 21.83 dB, and R, is reduced by 4.84%, indicating better
signal restoration. Furthermore, compared with the PGC-DCM algorithm, the THD is reduced
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Fig. 11. Demodulation time domain results of different PGC algorithms.

by 10.66 dB, SINAD is increased by 28.67 dB, and R, is reduced by 80.12%, representing a
significant improvement. The high error of 80.58% observed in the PGC-DCM algorithm can
be explained as follows: as shown in Fig. 2, the coefficient terms in the demodulated results
of the PGC-DCM algorithm are inherently much smaller than 1 and the algorithm is highly
sensitive to modulation depth and optical-intensity disturbances. As a result, the amplitude of its

demodulated signal is much lower than 2 rad (as shown in Fig. 11(d)), leading to a very high
error value.
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Fig. 12. PSD of different PGC algorithms.
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Table 1. Performance of Different Demodulation Algorithms

Algorithm THD (dB) SINAD (dB) Rerror (%)
PGC-Arctan 33.22 3291 5.30
PGC-DCM -55.66 26.07 80.58
PGC-MCM -66.32 54.74 0.46

In addition, the noise-equivalent power (NEP) of the three algorithms was calculated. The
NEP of the PGC-Arctan algorithm is —44.59dBW / vHz, that of the PGC-DCM algorithm is
—59.02dBW /v/Hz, and the PGC-MCM algorithm also achieves —60.85dBW /VHz. Therefore,
the proposed method does not degrade the NEP performance. The PSD curves of the NEP for
the three algorithms are shown in Fig. 12(d).

We further evaluate the feasibility of implementing the proposed algorithm in practical
engineering systems. Although PGC-MCM employs six mixing channels and thus requires more
operations than conventional single- or dual-channel schemes, its core computations (mixing,
low-pass filtering, and basic arithmetic) are structurally regular and well suited to parallel
and pipelined realization on DSPs, multi-core CPUs, GPUs, and FPGAs. The computational
and hardware cost scales approximately linearly with the number of channels, so with current
embedded processors and accelerator devices the proposed algorithm can be implemented in
®-OTDR systems without compromising real-time demodulation performance.

5. Conclusion

In this work, we theoretically analyze how to select the appropriate mixing components in
a multi-carrier mixing scheme, and on this basis, we propose an improved PGC algorithm
(PGC-MCM). By introducing the fundamental, second-order, and third-order harmonics of the
carrier for frequency mixing, the PGC-MCM effectively eliminates the nonlinear distortion
induced by non-ideal factors such as MD, CPD, and LID. Both simulation and experimental
results demonstrate that the algorithm maintains a low THD and high SINAD under the influence
of all three disturbances, exhibiting excellent robustness and demodulation accuracy. Therefore,
the proposed scheme provides a more reliable demodulation approach for ®-OTDR system in
high-sensitivity vibration monitoring and other engineering applications, showing significant
potential for practical deployment.
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